正規直交基底 と 正射影

電通大:山田

正規直交基底

[設定] V を内積空間(内積を備えた線形空間)とする.

定義. (p.184)

V の基底 $\mathcal{U}=(ec{u}_1,ec{u}_2,\ldots,ec{u}_n)$ が正規 直交基底である, とは

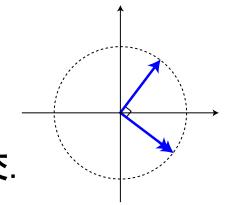
$$(ec{u}_i,ec{u}_j) = egin{cases} 1 & i=j &$$
正規 $0 & i
eq j &$ 直交

例 $1. \mathbb{R}^n$ のユークリッド内積に関して,

標準基底 $\mathcal{E}=(ec{e}_1,ec{e}_2,\ldots,ec{e}_n)$ は正規直交.

例 2. \mathbb{R}^2 のユークリッド内積に関して,

基底
$$\mathcal{U}=\left(ec{a}_1=rac{1}{5}iggl[3]{4}
ight],\ ec{a}_2=rac{1}{5}iggl[4]{4}
ight]$$
は正規直交.



例 3. \mathbb{R}^3 の部分空間 V に ユークリッド内積の制限を備えるとき

$$V = \left\{ egin{bmatrix} x \ y \ z \end{bmatrix} \in \mathbb{R}^3 \ \middle| \ x + 2y - 4z = 0
ight\}$$

基底
$$\mathcal{U}=\left(\vec{u}_1=rac{1}{\sqrt{5}}\left|egin{array}{c} -2\\1\\0 \end{array}
ight|,\; \vec{u}_2=rac{1}{\sqrt{105}}\left|egin{array}{c} 4\\8\\5 \end{array}
ight|
ight)$$
 は正規直交.

例 $4. \mathbb{R}^2$ に 次の内積を備えるとき

$$\left(egin{bmatrix} a_1 \ a_2 \end{bmatrix}, egin{bmatrix} b_1 \ b_2 \end{bmatrix}
ight) \ = \ [a_1, a_2] egin{bmatrix} 2 & 1 \ 1 & 3 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \end{bmatrix}$$

基底
$$\mathcal{U}=\left(ec{u}_1=rac{1}{\sqrt{2}}iggl[egin{smallmatrix} 1 \ 0 \end{matrix} \end{matrix}, \ ec{u}_2=rac{1}{\sqrt{10}}iggl[egin{smallmatrix} -1 \ 2 \end{matrix} \end{matrix}
ight]
ight)$$
は正規直交.

役に立つメモ \mid 正規直交基底 $\mathcal{U}=(ec{u}_1,ec{u}_2,\ldots,ec{u}_n)$ に対して

 $\vec{u} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n$ とする.

 $(\vec{u}, \ \vec{u_1}) = (c_1\vec{u_1} + c_2\vec{u_2} + \dots + c_n\vec{u_n}, \ \vec{u_1}) = ?$

役に立つメモ \mid 正規直交基底 $\mathcal{U}=(ec{u}_1,ec{u}_2,\ldots,ec{u}_n)$ に対して

$$\vec{u} = c_1 \vec{u}_1 + c_2 \vec{u}_2 + \dots + c_n \vec{u}_n$$
 とする.

$$(\vec{u}, \ \vec{u_1}) = (c_1\vec{u}_1 + c_2\vec{u}_2 + \cdots + c_n\vec{u}_n, \ \vec{u_1}) = c_1$$

 \vec{u}_1 の係数 が得られる.

理由:内積の双線形性 そして 正規直交性 から

左辺 =
$$c_1(\vec{u}_1, \vec{u}_1) + c_2(\vec{u}_2, \vec{u}_1) + \cdots + c_n(\vec{u}_n, \vec{u}_1)$$

= $c_1 \cdot 1 + c_2 \cdot 0 + \cdots + c_n \cdot 0$
= c_1

一般には

$$(c_1\vec{u}_1 + c_2\vec{u}_2 + \dots + c_n\vec{u}_n, \ \vec{u}_j) = c_j$$

定理 p.186

どんな 内積空間 でも 正規直交基底 が存在する.

例えば, 空間内の"斜めの平面"にも正規直交基底が存在する.

っていうか

ただの基底から 正規直交基底を構成する アルゴリズムがある! 「グラム・シュミットの正規直交化」p.188

⇒ これが本日のテーマ

その前に

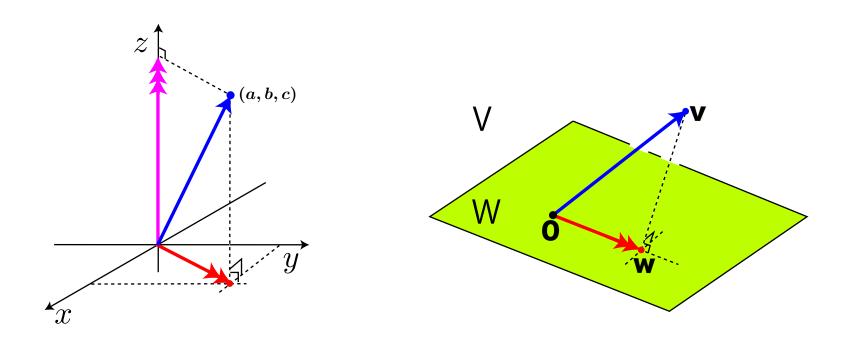
正規直交基底 が何の役に立つのかを解説.

それは.....

正射影 p.186 垂線をおろす

xyz-空間の中の点 A(a,b,c) の場合,

- (1) xy-平面への正射影は (a,b,0).
- (2) z-軸への正射影は (0,0,c).



それほど難しい概念ではないはずだが,数学としての完全な定義は 意外に難しい. [設定] V を内積空間.W を V の線形部分空間とする.

定義. (p.189). 「W の直交補空間(記号 W^{\perp})」

例:通常の \mathbb{R}^3 をxyz-空間とみたとき,

(1)
$$(xy$$
-平面) $^{\perp} = (z$ -軸). (2) $(z$ -軸) $^{\perp} = (xy$ -平面).

[設定] V を内積空間. W を V の線形部分空間とする.

定義. (p.189). 「W の直交補空間(記号 W^{\perp})」

W と W^{\perp} は次の関係をみたす.

- ・ W^{\perp} は V の線形部分空間で, $\dim W^{\perp} = \dim V \dim W$.
- $W \cap W^{\perp} = \{\vec{0}\}.$

この2つの性質を $V=W\oplus W^{\perp}$ と表す. また, (有限次元なら) $(W^{\perp})^{\perp}=W$. 定義:正射影

V を内積空間. W を V の線形部分空間とする.

「 $\vec{v}(\in V)$ の W への正射影 \vec{w} 」とは、

V の分解 $V=W\oplus W^\perp$ に対応した $ec{v}$ の分解

$$ec{v}=ec{w}\ +\ ec{w}^\perp \qquad (ec{w}\in W,\ ec{w}^\perp\in W^\perp)$$

に現れる $ec{w}$ のこと.

・ $ec{v}-ec{w}$ は, W に属す任意のベクトルと直交する. ($ec{v}-ec{w}=ec{w}^\perp\in W^\perp$ だから)

【正射影の公式】p.186

V を内積空間. W を V の r 次元線形部分空間とする. $(\vec{u}_1,\vec{u}_2,\cdots,\vec{u}_r)$ が W の正規直交基底のとき,

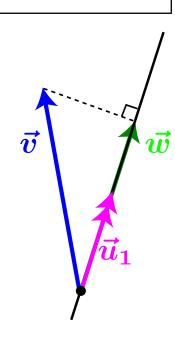
 \vec{v} の W への正射影 \vec{w} は

$$\vec{v} = (\vec{v}, \vec{u}_1)\vec{u}_1 + (\vec{v}, \vec{u}_2)\vec{u}_2 + \cdots + (\vec{v}, \vec{u}_r)\vec{u}_r$$

メモ: そもそも $\|ec{oldsymbol{u}}_{oldsymbol{1}}\|=1$ のとき

 $(\vec{v}, \vec{u}_1)\vec{u}_1$ が「 \vec{v} の \vec{u}_1 方向への正射影」である.

 $\frac{(\vec{v}, \vec{b})}{||\vec{b}||^2}\vec{b}$ が「 \vec{v} の \vec{b} 方向への正射影」である.



いざ 本日のテーマ グラム・シュミットの正規直交化 へ

コツを2つ 知って欲しい

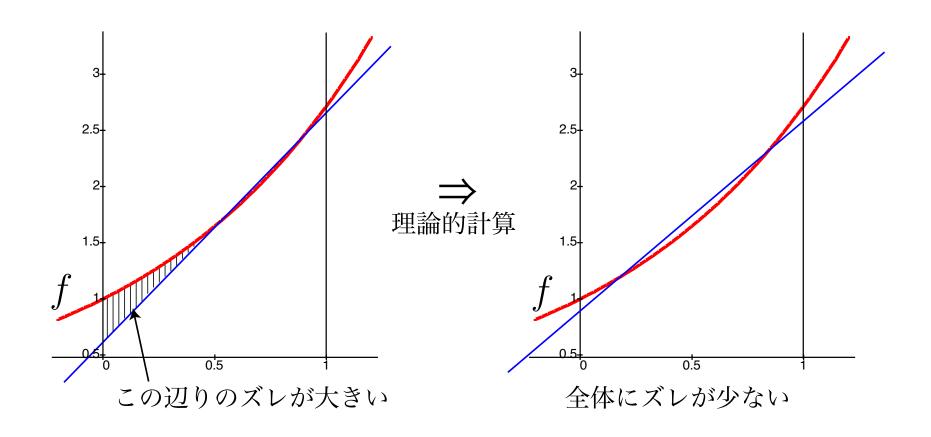
[応用] 関数のなす線形空間 と内積 (p.204)

電通大数学:山田

 $C^0[0,1]$: 区間 [0,1] 上の連続関数の集合 線形空間となる

関数 $f(x) = e^x$ を $C^0[0,1]$ の元 f とみなす.

課題:1次関数 ax+b のうちで最も f(x) に "近い" 関数 p(x)



考え方: $C^0[0,1]$ を内積空間にする

p.183, 204

$$egin{align} (\cdot, \cdot): & C^0[0,1] imes C^0[0,1] & o & \mathbb{R}, \ & (f_1, f_2) & \mapsto & (f_1, f_2) \ & = \int_0^1 f_1(x) f_2(x) \, dx. \ \end{pmatrix}$$

内積の公理は、双線形性、対称性、非負性の3つ.

そして 一般論。内積空間では、2点間の距離 を差のノルム

$$d(f,p) = \|f-p\|$$

で与えることができる.課題 は p が 1 次関数の集合 $\mathbb{R}[x]_1$ を動くときの

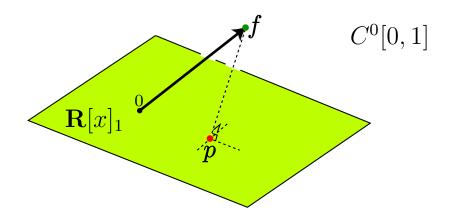
 $\|f-p\|^2$ の最小値を与える $p(x)=ax+b\in\mathbb{R}[x]_1$ と解釈できる.

p が 1 次関数の集合 $\mathbb{R}[x]_1$ を動くときの

$$\|f-p\|^2$$
 の最小値を与える $p(x)=ax+b\in\mathbb{R}[x]_1$

 $\mathbb{R}[x]_1$ は $C^0[0,1]$ の2次元部分空間なので,

求める p は f の $\mathbb{R}[x]_1$ への正射影 に他ならない.



正射影の公式
$$(\mathsf{p}.186)$$
 $\mathcal{U}=(ec{u}_1,\cdots,ec{u}_r)$ が W の正規直交基底の

とき. \vec{v} の W への正射影 \vec{w} は

$$\vec{w} = (\vec{v}, \vec{u}_1)\vec{u}_1 + (\vec{v}, \vec{u}_2)\vec{u}_2 + \cdots + (\vec{v}, \vec{u}_r)\vec{u}_r$$

ここまで