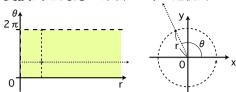
極座標変換 (by 山田)

1 変換式と対応 厳密には、"連続的に1対1対応でない部分"は除いた方がよい。



rθ-座標 から xy-座標 へ	<i>xy</i> -座標 から <i>rθ</i> -座標 へ
$\int x = r \cos \theta,$	$\int r = \sqrt{x^2 + y^2},$
$y = r \sin \theta$	$\int \tan \theta = \frac{y}{x}$
r > 0,	$(x,y) \neq (0,0)$
$0 < \theta < 2\pi)$	また, <i>x</i> -軸の正か
$(or -\pi < \theta < \pi)$	負の部分を除く

- (1) (x,y)=(1,-1) を (r,θ) に変換すると? $(r,\theta)=(2,\frac{2}{3}\pi)$ を (x,y) に変換すると?
- (2) 直線 y = -x や 直線 y = 1 を $r\theta$ -座標 に変換すると? 直線 r = 2 や 曲線 $r = \cos\theta$ (範囲に注意) を xy-座標 に変換すると?
- (3) 関数 $f: \mathbf{R}^2 \to \mathbf{R}$ が xy-座標 について $f = xy^2$ と表されているとき、 $r\theta$ -座標 についての表示を求めよ.

注意: このような設定では f(1,0) という表示は混乱を招く。(x,y)=(1,0) なのか $(r,\theta)=(1,0)$ なのか判断できないからだ。慣れるまでは $f(r\cos\theta,r\sin\theta)$ の形にして書くとよい。

2 偏微分と変数変換 各マスの中では、左が $r\theta$ -座標による表示、右が xy-座標による表示。

偏微分の表

		\boldsymbol{x}			y	
$\frac{\partial}{\partial r}$	$\cos \theta$	=	$\frac{x}{\sqrt{x^2 + y^2}}$	$\sin \theta$	=	$\frac{y}{\sqrt{x^2+y^2}}$
$\frac{\partial}{\partial \theta}$	$-r\sin\theta$	=	-y	$r\cos\theta$	=	x
		r			θ	
$\frac{\partial}{\partial x}$	$\cos \theta$	=	$\frac{x}{\sqrt{x^2 + y^2}}$	$-\frac{\sin\theta}{r}$	=	$-\frac{y}{x^2+y^2}$
$\frac{\partial}{\partial y}$	$\sin \theta$	=	$\frac{y}{\sqrt{x^2+y^2}}$	$\frac{\cos \theta}{r}$	=	$\frac{x}{x^2+y^2}$

注意:x と y が組,r と θ が組である: $\frac{\partial x}{\partial r} = \frac{x}{r}$ は右辺が "マナー違反". 公式 " $\frac{\partial}{\partial u} = \frac{\partial x}{\partial u} \cdot \frac{\partial}{\partial x} + \frac{\partial y}{\partial u} \cdot \frac{\partial}{\partial y}$ " により,

$$\frac{\partial}{\partial r} = \frac{x}{\sqrt{x^2 + y^2}} \cdot \frac{\partial}{\partial x} + \frac{y}{\sqrt{x^2 + y^2}} \cdot \frac{\partial}{\partial y} \qquad \qquad \frac{\partial}{\partial \theta} = -y \cdot \frac{\partial}{\partial x} + x \cdot \frac{\partial}{\partial y}$$

$$\frac{\partial}{\partial x} = \cos \theta \cdot \frac{\partial}{\partial r} - \frac{\sin \theta}{r} \cdot \frac{\partial}{\partial \theta} \qquad \qquad \frac{\partial}{\partial y} = \sin \theta \cdot \frac{\partial}{\partial r} + \frac{\cos \theta}{r} \cdot \frac{\partial}{\partial \theta}$$

- (4) 前の問題 (3) の関数 f について次の 2 通りの計算を比べよ.
 - (あ) x による偏微分 $\frac{\partial}{\partial x}f$ を計算し $r\theta$ -座標 で表示する.
 - (い) $r\theta$ -座標で表示した f を, $\frac{\partial}{\partial x}$ を $r\theta$ -座標 に変換した偏微分作用素で偏微分.

3 2次の偏微分

次のそれぞれを $r\theta$ -座標の偏微分作用素に変換せよ.

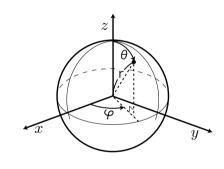
$$\frac{\partial^2}{\partial x^2} = \frac{\partial^2}{\partial y^2} = \frac{\partial^2}{\partial y^2$$

ラプラシアン:
$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} =$$

4 積分の変換

ヤコビ行列式:
$$\frac{\partial(x,y)}{\partial(r,\theta)} = \det\begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} \end{pmatrix} = r \quad \text{よって} \left[\frac{dxdy = r \, dr d\theta}{dr} \right].$$

5 空間の極座標、変換式と対応 これまでと同様の計算(ラプラシアンまで)をメモっておけ.



r heta arphi-座標 から xyz -座標 へ	xyz-座標 から $r heta arphi$ -座標 へ
$\begin{cases} x = r \sin \theta \cos \varphi, \\ y = r \sin \theta \sin \varphi, \\ z = r \cos \theta \end{cases}$	$\begin{cases} r = \sqrt{x^2 + y^2 + z^2}, \\ \tan \theta = \frac{\sqrt{x^2 + y^2}}{z}, \\ \tan \varphi = \frac{y}{x} \end{cases}$
$r > 0, \ 0 < \theta < \pi$	xz-平面を z -軸で2つに分けて
$0 < \varphi < 2\pi$	片方の半平面(含 z-軸)を除く.

ヤコビ行列式:

 $dxdydz = r^2 \sin \theta \, dr d\theta d\varphi$. (一度は自分で計算しておくこと)