置換群 練習問題の解答例(by 山田)

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 6 & 4 & 1 & 5 \end{pmatrix} \in \mathcal{S}_6.$$

$$\begin{aligned}
&\boxed{1} & (1) \\
& \sigma\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
3 & 2 & 6 & 4 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 6 & 4 & 1 & 5 \\
4 & 6 & 2 & 1 & 3 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
3 & 2 & 6 & 4 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
3 & 2 & 6 & 4 & 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 4 & 1 & 5 & 2 \\
6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
4 & 6 & 1 & 3 & 5 & 2 \end{pmatrix}, \quad \tau^{-1} = \begin{pmatrix} 3 & 2 & 6 & 4 & 1 & 5 \\
1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
5 & 2 & 1 & 4 & 6 & 3 \end{pmatrix}.
\end{aligned}$$

$$(2)$$

$$(\sigma\tau)^{-1} = \begin{pmatrix} 4 & 6 & 2 & 1 & 3 & 5 \\
1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
4 & 3 & 5 & 1 & 6 & 2 \end{pmatrix} = \tau^{-1}\sigma^{-1}.$$

$$(\tau\sigma)^{-1} = \begin{pmatrix} 6 & 5 & 4 & 3 & 1 & 2 \\
1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
5 & 6 & 4 & 3 & 2 & 1 \end{pmatrix} = \sigma^{-1}\tau^{-1}.$$

$$\tau^{-1}\sigma\tau = \tau^{-1}(\sigma\tau) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\
4 & 3 & 2 & 5 & 1 & 6 \end{pmatrix}.$$

(3)—(7)

x	σ	au	$\sigma \tau$	$ au\sigma$
(3) x	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 6 & 4 & 1 & 5 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 2 & 1 & 3 & 5 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix} $
x^2	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 1 & 3 & 5 & 6 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 5 & 4 & 3 & 1 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 6 & 4 & 2 & 3 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 4 & 6 & 5 \end{pmatrix} $
x^3	$ \left(\begin{array}{c} 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ 1 \ 6 \ 3 \ 4 \ 5 \ 2 \right) $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 1 & 4 & 6 & 3 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 1 & 6 & 2 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 4 & 3 & 2 & 1 \end{pmatrix} $
x^4	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 1 & 5 & 6 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} $	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} $	$ \left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{array}\right) $
x^5	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 3 & 5 & 2 \end{pmatrix} $			
x^6	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix} $			
(4) 位数	6	4	4	4
(5) 軌道	1,3,4	1,3,6,5	1,4	1,6,2,5
(6) 巡回	(1,3,4)(2,6)	(1,3,6,5)	(1,4)(2,6,5,3)	(1,6,2,5)(3,4)
(7) 偶奇	奇	奇	偶	偶

(3)—(7) 続き

(3)—(1) NOLG					
x	σ	σ^{-1}	$ au^{-1}\sigma au$		
(3) x	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix} $	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 3 & 5 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 2 & 5 & 1 & 6 \end{pmatrix}$		
x^2	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 1 & 3 & 5 & 6 \end{pmatrix} = (1, 4, 3) $	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 1 & 5 & 6 \end{pmatrix} = (1, 3, 4)$	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 3 & 1 & 4 & 6 \end{pmatrix} = (1, 5, 4)$		
x^3	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 3 & 4 & 5 & 2 \end{pmatrix} = (2, 6)$	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 3 & 4 & 5 & 2 \end{pmatrix} = (2, 6)$	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 2 & 4 & 5 & 6 \end{pmatrix} = (2,3)$		
x^4	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 1 & 5 & 6 \end{pmatrix} = (1, 3, 4) $	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 1 & 3 & 5 & 6 \end{pmatrix} = (1, 4, 3)$	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 2 & 3 & 5 & 1 & 6 \end{pmatrix} = (1, 4, 5)$		
x^5	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 6 & 1 & 3 & 5 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 6 & 4 & 1 & 5 & 2 \end{pmatrix}$	$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 3 & 2 & 1 & 4 & 6 \end{pmatrix} $		
x^6	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$	$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 \end{pmatrix}$		
(4) 位数	6	6	6		
(5) 軌道	1,3,4	1,4,3	1,4,5		
(6) 巡回	(1,3,4)(2,6)	(1,4,3)(2,6)	(1,4,5)(2,3)		
(7) 偶奇	奇	奇	奇		

[2] (a1) 置換 $\sigma \in S_n$ に対して、次のアルゴリズムを適用する:

- (0) 動く数字がなくなるまで 下記の (1) に続いて (k) を反復する (k = 2, 3, ...)
- (1) まず 1 の σ による軌道を調べる。(1 が動かない場合は省略)
- (k) σ で動く数字のうち、調べた軌道のどれにも含まれていない数字のうち最小のもの σ による軌道を調べる.

高々((1) と (k) の反復を)n 回操作すれば (0) の状況になり終了する。それぞれの軌道は巡回置換になっており、(k) の条件「どれにも含まれていない数字」により、軌道どうしは交わらない。 \square

- (a2) 巡回置換は互換の積: $(i_1,i_2,\ldots,i_r)=(i_1,i_2)(i_2,i_3)\cdots(i_{r-1},i_r)$ □ 補足:従って長さrの巡回置換の符号は $\operatorname{sgn}((i_1,i_2,\ldots,i_r))=(-1)^{r-1}$.
- (a3) 互換は隣接置換の積:I < Jと仮定する。2(J I) 1個の積に分解する。

$$(I, J) = (I, I+1)(I+1, I+2) \cdots (J-2, J-1)(J-1, J)$$

 $(J-2, J-1) \cdots (I+1, I+2)(I, I+1).$

(A) 任意の置換は互換の積: (a1) と (a2) による.

(a2) の証明によれば、交わらない巡回置換を互換に分解したとき、それぞれから現れる互換は交わらない。なお、軌道の交わりがない巡回置換の積は交換可能. \Box

- (B) 置換の偶奇は分解に依らない:差分 A から $A(\sigma)$ への変化を考察する. 置換の符号は準同型性質をもつ: $\mathrm{sgn}(\sigma\tau)=\mathrm{sgn}(\sigma)\mathrm{sgn}(\tau)$. 互換 1 個の符号はマイナスであることから,分解によって個数が変わっても,個数の偶奇までは変わらない. \square
- (1) 積と偶奇の関係: $\sigma \tau$ の分解の1つとして σ の分解と τ の分解の積が考えられる。(B) で示した通り、他の分解を選んでも偶奇は変わらない。 置換の符号は 互換の積への分解の個数の偶奇なので、整数の和と同じになる。 \Box
- (2) 逆元と偶奇の関係: σ の分解と σ^{-1} の分解の積は $\sigma\sigma^{-1}=1$ の分解をなす。1は 偶置換なので (1) から主張が得られる.
- (3) 偶置換・奇置換の個数:1つの互換 σ を固定する. 「左から σ をかける」操作 F_{σ} ($F_{\sigma}(x) = \sigma x$) は偶置換を奇置換に、奇置換を偶置換に変え、

 F_{σ} : { 偶置換 } \rightarrow { 奇置換 }, F_{σ} : { 奇置換 } \rightarrow { 偶置換 },

2回施すと元に戻る: $F_{\sigma}(F_{\sigma}(\tau)) = \sigma^2 \tau = \tau$. このことから F_{σ} が全単射であることがわかる.従ってそれらの個数は等しい.それぞれ n!/2 個

- (4) 位数は高々n!: 置換 σ の累乗をn!乗まで考える。 σ , σ^2 , σ^3 , \cdots , $\sigma^{n!}$. もしこの中に単位元1が含まれていれば終了($\sigma^k=1$ なら位数はkかそれより小さい)。含まれていないとすれば S_n の元の個数はn! 個なので,この中に少なくとも1組 $\sigma^k=\sigma^l(k< l)$ となる組があるはず.このとき σ^{-k} をかけて $\sigma^{l-k}=1$ を得る.位数はl-k(< n!) かそれより小さい.(ただしこの場合,結局1が含まれていないことに矛盾する.)
- 3 具体例ではなく抽象的に説明できる.

 - (2) 共役元の位数は等しい: $(\tau^{-1}\sigma\tau)^n=\tau^{-1}\sigma\tau\cdot\tau^{-1}\sigma\tau\cdot\tau^{-1}\sigma\tau\cdot\tau^{-1}\sigma\tau$ により、 $(\tau^{-1}\sigma\tau)^k=\tau^{-1}\sigma^k\tau=1\Leftrightarrow\sigma^k=1$ となるため.
 - (3) σ が巡回置換で $\sigma(i_k)=i_{k+1}$ $(k=1,2,\ldots,r-1)$ のとき $\tau^{-1}\sigma\tau$ による $\tau^{-1}(i_k)$ の像は確かに

$$(\tau^{-1}\sigma\tau)(\tau^{-1}(i_k)) = (\tau^{-1}\sigma)(\tau(\tau^{-1}(i_k))) = (\tau^{-1}\sigma)(i_k) = \tau^{-1}(\sigma(i_k)) = \tau^{-1}(i_{k+1})$$

となる. $\sigma(i_r) = i_1$ についても同様.

具体例では: σ の巡回置換への分解は (1,3,4)(2,6). $\tau^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 1 & 4 & 6 & 3 \end{pmatrix}$ で写すと (5,1,4)(2,3) = (1,4,5)(2,3). $\tau^{-1}\sigma\tau$ の巡回置換への分解が得られる.

(4)
$$[\sigma, \tau]^{-1} = (\sigma \tau \sigma^{-1} \tau^{-1})^{-1} = (\tau^{-1})^{-1} (\sigma^{-1})^{-1} \tau^{-1} \sigma^{-1} = \tau \sigma \tau^{-1} \sigma^{-1} = [\tau, \sigma].$$

(5)
$$[\tau^{-1}\omega\tau, \tau^{-1}\sigma\tau] = \tau^{-1}\omega\tau \cdot \tau^{-1}\sigma\tau \cdot (\tau^{-1}\omega\tau)^{-1}(\tau^{-1}\sigma\tau)^{-1}$$

$$= \tau^{-1}\omega\tau \cdot \tau^{-1}\sigma\tau \cdot \tau^{-1}\omega^{-1}\tau \cdot \tau^{-1}\sigma^{-1}\tau^{-1}$$

$$= \tau^{-1}\omega\sigma\omega^{-1}\sigma^{-1}\tau^{-1} = \tau^{-1}[\omega, \sigma]\tau.$$

以上