Divide knot presentation of Berge's knots of lens space surgery

Yuichi YAMADA (Univ. of Electro-Comm. Tokyo)

Singularities, knots, and mapping class groups in memory of Bernard Perron 2010 Sept. Univ. of Bourgogne, Dijon, France

A Results. (Divide presentation of Berge knots)

$\S1$. Dehn surgery

Dehn surgery = Cut and paste of a soliod torus.

$$(K; p) := (S^3 \setminus \text{open nbd}N(K)) \cup_{\partial} \text{ Solid torus.}$$

Coefficient (in **Z**) "framing" = a *parallel* curve ($\subset \partial N(K)$) of K, or the linking number.

Solid torus is reglued such as "the meridian comes to the parallel"

Theorem ([Lickorish '62])

Any closed connected oriented 3-manifold M is obtained by a framed link (L, \mathbf{p}) in S^3 , ie, $M = (L; \mathbf{p})$,

$$(L,\mathbf{p}) = (K_1,p_1) \cup (K_2,p_2) \cup \cdots \cup (K_n,p_n).$$

Lens space L(p,q)

Theorem (Kirby-Rolfsen moves (Fenn-Rourke's ver.))

The 3-manifolds are homeo. $(L; \mathbf{p}) \cong (L'; \mathbf{p}')$ \Leftrightarrow framed links $(L, \mathbf{p}), (L', \mathbf{p}')$ are moved to each other by isotopy and the following

Note: This (with a suitable sign) is blow-down/up, related to resolution of the singularity. The green curve (axis of the twist) is called the exceptional curve.

19-surgery is

What is *the best method* to prove it?

18-surgery is

My answer ([Y]) :

blue \cup green = S^3 , and red becomes the knot P(-2, 3, 7). The knot is constructed by seq. of full-twists = blow-downs.

In 2000, I heard A'Campo's divide theory:

a generic plane Curve $P \Rightarrow a \operatorname{Link} L(P) \text{ in } S^3$ A'Campo's divide knots ['75]

— Plane curves are easier to draw than knots.

Divide knots

Lens space surgery

Results. (Divide presentation of Berge knots)

Typical example of my results.

Theorem (Main Theorem)

Every Berge's knot of lens space surgery is a divide knot.

Berge's list ('90), is <u>believed to be</u> the complete list of lens space surgery.

For the proof, it took many years.

Because I am lazy, but As a phenomenon, lens space surgery is not simple. The set (list) consists of **three subfamilies** of inifinite knots. Each subfamily has each "personality". At first, I hoped to synthesize all of them deductively. But after all, *Each subfamily needs each method in the detail*. By another approach (Heegarrd Floer homology, \mathbb{C} -links by Rudolph \cdots), it is proved:

Lemma (Hedden)

Any knots of lens space surgery is intersection of an algebraic surface in \mathbb{C}^2 and a 4-ball.

My study is more concrete, to know

- · "How" does each knot yield a lens space?
- · the construction of each knot of lens space surgery,
- · the set of lens space surgeries. · · ·

§2. A'Campo's divide knots

Original construction.

a generic plane Curve $P \Rightarrow$ a Link L(P) in S^3 A'Campo's divide knots

Let *P* be a generic (no self-tangency) curve in the unit disk *D*,

$$\begin{split} S^3 &= \{(u,v) \in TD | u \in D, \ v \in T_u D, \ |u|^2 + |v|^2 = 1\} \\ L(P) &:= \{(u,v) \in TD | u \in P, \ v \in T_u P, \ |u|^2 + |v|^2 = 1\} \subset S^3. \end{split}$$

· Here is the strongly-involution $\iota : (u, v) \mapsto (u, -v)$.

Ex. Torus links ['02 Goda-Hirasawa-Y, (Gusein-Zade, etc.)] *P* is the $p \times q$ rectangle (billiard) curve $\Rightarrow L(P)$ is T(p,q)(PL curve with slope ± 1 in the rectangle.) ex. (p,q) = (7,4)

Divide knots

Introduction. Dehn surgery

Results. (Divide presentation of Berge knots)

Basics on Divide knots [N.A'Campo, L.Rudolph,..]

(0) L(P) is a knot $(\sharp L(P) = 1) \Leftrightarrow P$ is an immersed arc.

- (1) The genus of knot L(P) = # double points of P.
- (2) $\operatorname{lk}(L(P_1), L(P_2)) = \sharp(P_1 \cap P_2)$, if they are knots.
- (3) Every divide knot L(P) is fibered.
- (4) Any divide knot is a closure of strongly quasi-positive braid.
 ie, product of some σ_{ij}.

(5) $P_1 \sim P_2$ by Δ -move $\Rightarrow L(P_1) = L(P_2)$. L is not injective.

$$\left| \bigcup_{i} \bigcup_{j} \sigma_{ij} \right| \sigma_{ij} \sim \sum_{\Delta \text{-move on plane curves}} \sigma_{ij}$$

These curves present the same knot P(-2, 3, 7)(Thanks to Hirasawa)

Only 19 and 18 are the coefficients of lens space surgery.

"Ordered Morse divide (OMD)" [Couture]

A divide is called OMD if (w.r.t at least one direction) max/min points are in the same level, up to isotopy.

⇐ This is a Non-OMD. (w.r.t horizontal nor vertical direction)

['01 Couture-Perron] proved a visualized version an OMD $P \Rightarrow |$ a knot L(P) in $S^3|$ Braid presentation of L(P)The braid presentation of L(P). $X, X_{\rm or} \to \overline{X}, \overline{X}_{\rm or} \overline{X}$

We get the fiber surface of L(P). genus = 5.

Divide knots

Introduction. Dehn surgery

Results. (Divide presentation of Berge knots)

 $\sigma_3\sigma_2\sigma_1\;\sigma_3\sigma_2\sigma_1\;\sigma_3\sigma_2\sigma_1\;\sigma_2\sigma_1\;\sigma_2\sigma_1$

The result is $W_4 {}^3W_3 {}^2$, where $W_n := \sigma_{n-1}\sigma_{n-2}\cdots\sigma_2\sigma_1 \quad "1/n \text{ twist"}.$

Exercise. Show that $W_5{}^3W_3$ induces the same knot.

where we call a point $(m, n) \in \mathbb{Z}^2$ odd if $m + n \equiv 1 \mod 2$

Examples.

In fact, these examples presents knots of lens space surgery.

 \cdot L-shaped curve

· Generalized L-shaped curve

 \cdot T-shaped curve

· Generalized T-shaped curve

T(5,6) 35

Lemma (Y)

"Adding a square" corresponds to a right-handed full-twist = blow-down = coord. transform: (x, y) = (X, Y/X). (ex. $y^2 = x + \epsilon$ becomes $Y^2 = X^2(X + \epsilon)$)

Cable knot: C(T(a, b); p, pab + r) of a torus knot is a divide knot. ex. C(T(2, 3); 2, 13)

It is algebraic: From $T(a, b) = \begin{cases} x = t^a \\ y = t^b \end{cases}$ to $\begin{cases} x = t^{ap} \\ y = t^{bp} + t^{bp+r} \end{cases}$, or $y = x^{\frac{b}{a}} \left(1 + x^{\frac{r}{ap}}\right)$

Puiseux pair is $\{(b, a), (bp + r, p)\}$.

More iterated cables (\Rightarrow generalized L-shaped) C(C(T(a, b); p, pab + r); P, Pp(pab + r) + R)) is represented, (ex. $C(C(T(2, 3); 2, 13); 3, 80)), \quad y = x^{\frac{b}{a}} \left(1 + x^{\frac{r}{ap}} \left(1 + x^{\frac{R}{apP}}\right)\right).$

Appplication : Twisted torus knot

T(p, q; r, s) is constructed from T(p, q) (in the standard position) by s full-twists of the r strings in the p strings.

Fact. T(p, q; r, s) can be cable knots, for specially controlled p, q, r, s ([Morimoto-Y], SangYop Lee)

$\S3$. Lens space surgery

"Which (K; p) is a lens space?" K: a knot

ex.1 ['71 L. Moser] Torus knots. $p = ab \pm 1 \Rightarrow (T(a, b); p) \cong L(p, -b^2).$ K := T(3,5), then (K;16) = L(16,7) and (K;14) = L(14,5).

ex.2 ['77 J. Bailey, D. Rolfsen] 2 Cables of Torus knots — Shown in $\S2$. —

ex.3 ['80 R. Fintushel, R. Stern] Hyperbolic knot! K := P(-2, 3, 7), then (K; 19) = -L(19, 7). (K; 18) = -L(18, 7).

Berge's doubly-primitive knots ['90] A knot K in the Heegaard surface Σ_2 is *doubly-primitive* iff

 K_{\sharp} (as in π_1) is a generator in both $\pi_1(H_2)$ and $\pi_1(-H_2)$.

Such a knot K with the surface slope (coeff.) always yields a lens space. \blacksquare

Berge (tried to) classfied and made a list of such knots. His list consists of **3** Subfamilies (and of **12** "Type" s).

Type I, II, III, ..., VI | VII, VIII | IX, ..., XII.

Berge's list (Subfamilies)

(1) Knots in the solid torus (Berge-Gabai knots)

Type I : Torus knots

Type II : 2-cables of torus knots

Type III \cdots VI : "generic" lens surgery

(2) Knots in the genus 1 fiber surface

Type VII : knots in the trefoil fiber surface F^+ Type VIII : knots in the fig8. fiber surface F^-

(3) Sporadic examples

1	- Deep	lai ya	
Secold Dr	¥	10	201

Type $IX \cdots XII$: Sporadic knots (It is known XI = X, XII = IX)

Results : Divide presentation of Berge's knots

ex. TypeIII knots are parametrized by

$$\delta, \varepsilon \in \{\pm 1\}, \ A(\geq 2), k(\geq 0) \ \text{and} \ t \in \mathbf{Z}.$$

Thus we call the knots

$$k_{\rm III}(\delta,\varepsilon,A,k,t)$$

TypeIII knot: $k_{III}(-1, +1, A, k, t)$ ex. P(-2, 3, 7) (with 18-surgery) is $k_{III}(-1, +1, 2, 0, 0)$, ie, A = 2, k = t = 0. The divide presentation is

Green lines are used for k, t > 0, we add squares (full-twists). Notation:

Divide knots

Lens space surgery

Theorem (2-1).([Y ('05 JKTR)]) **TypeVII** (L-shaped) Let F^+ be the fiber surface of the <u>left</u>-handed trefoil. \cdot [Y'10] Any TypeVII knot is $k^+(a, b)$ in F^+ with a positive coprime (a, b) s.t. 0 < a < b. Its *p*-surgery is L(p, q). $(p=a^2 + ab + b^2, q = -(a/b)^2 \mod p)$

Theorem (2-2).
TypeVIII The most difficult.
Let
$$F^-$$
 be the fiber surface of fig8 knot.
 \cdot [Y'10] Any TypeVIII knot is $k^-(a, b)$,
with a positive coprime (a, b) s.t. $0 < a < b/2$.
Its *p*-surgery is $L(p, q)$.
 $(p = -a^2 + ab + b^2, q = -(a/b)^2 \mod p)$

· It is known
$$k^-(a,b) = k^-(b-a,b)$$
.

On divide knots, negative twists are hard to treat with.

 $\cdot k^{-}(a, b)$ is a divide knot. The plane curve is constructed by a *blow-down* from the rectangle curve $a \times (b - a)$, as follows: **ex.** $k^{-}(2,5)$ is from T(2,3)

Let's do the blow-down.

Key of the proof was ['05 Baker]'s deformation:

Blow-down from T(2,3) to construct $k^{-}(2,5)$.

If a, b are large, it is a hard homework.

TypeVIII knots.

Theorem (3). Type IX and X \cdot (['05 Baker]) The knot $k_{IX}(j)$ and $k_X(j)$, $(j \in \mathbb{Z})$ is obtained from T(j, j + 1) by full-twists three times for TypeIX, in order (a \rightarrow b \rightarrow c), $p = 22j^2 + 9j + 1$, for TypeX, in order (a \rightarrow c \rightarrow b), $p = 22j^2 + 13j + 2$.

Sporadic knots in Type IX. $(p = 22j^2 + 9j + 1)$ and Type X.

 $k_{IX}(1)$, L-shaped, p = 32, Area=33. $k_{IX}(2)$, generalized L-shaped, p = 107, Area=109.

Fact. (maybe known to experts) $k^{-}(2,5)$ (in Type**VIII**, p = 31) is the same knot $k_{IX}(1)$ (p = 32), but the coefficients p differ.

My work is not completed yet in the following sense:

Q1. Decide the final, best divide presentation, for every knots (TypeVIII) in Berge's list of lens space surgery .
— minimal area, good-shaped, or...? —
The presentation is not unique, because of at least Δ-moves.

Related question:

Q2. For a given plane curve, determine whether it presents a knot of lens space surgery or not, and if it is, get the coefficient p (and Berge's parameter) from the curve.

Q3. Find more exceptional Dehn surgery along divide knots.

 \cdot ['09 Couture] introduced Khovanov "Categorification" invariants for divide knots...

Thank you very much!