4-manifolds constructed by lens space surgeries

Motoo TANGE (RIMS) [†]Yuichi YAMADA (Univ. of Electro-Comm. Tokyo)

2011 Juli. 5 Topology Geometry Seminor Hiroshima University

3 Lens space surgeries along Torus knots

Outline of Proof

Intro

1.1. Thanks to

- [Saito-Teragaito 2010] (2008 Arxiv)
 "Knots yielding homeomorphic lens spaces by Dehn surgery"
- · 2010 Nov. "4-dim. topology" in Hiroshima University. Sasahira: Instanton Floer homology over lens spaces

 \rightarrow Some L(p,q) can not be smoothly embedded in $\mathbb{C}P^2 \sharp \mathbb{C}P^2$.

[Sasahira] (2010)

1.2. Framed link

 $T((5,11),(1,3)) = T(5,11) \cup T(3,1)$

Framed link
$$(L; \mathbf{n}) = (K_1 \cup K_2 \cup \ldots \cup K_r; n_1, n_2, \ldots, n_r)$$

Let K be a knot (L be a link) in $S^3 = \partial B^4$,
 $n \in \mathbb{Z}$ (or $n = p/q \in \mathbb{Q} \cup \{1/0\}$)

Definition (3-manifold; Dehn surgery)

$$M^{3}(K; n) = (S^{3} \setminus \operatorname{int} N(K)) \cup_{\varphi_{n}} (D^{2} \times S^{1})$$

where $\varphi_n : \partial(D^2 \times S^1) \to \partial(S^3 \setminus \operatorname{int} \mathcal{N}(\mathcal{K}))$ is a homeomorphism s.t.

$$\varphi_{n*}(\partial D^2 \times \{\mathrm{pt}\}) = n[m] + [l] \quad (\mathrm{or} \ p[m] + q[l])$$

 $[m], [l] \in H_1(S^3 \setminus \operatorname{int} N(K))$ is the meridian-longitude system.

Definition

The core $\{o\} \times S^1$ in M(K; n) is called a <u>dual knot</u> of the surgery.

 $n \in \mathbb{Z}$ (an integer) called *framing*.

Definition (4-manifold; Kirby diagram, 2-handle attach)

$$X^{4}(K; n) = B^{4} \cup_{\overline{\varphi_{n}}} (D^{2} \times D^{2})$$

where $\overline{\varphi_n}: (\partial D^2) \times D^2 \hookrightarrow \partial B^4$ is an embedding s.t.

$$\overline{\varphi_n}(\partial D^2 \times \{o\}) = K,$$
$$\overline{\varphi_n}(\partial D^2 \times \{\mathrm{pt}\}) = n[m] + [l].$$

Fact

For $n \in \mathbb{Z}$,

$$\partial X^4(K;n) = M^3(K;n)$$

3-dim. Example: Lens space L(p,q)

 $L(p,q)\cong L(p,q') \ \Leftrightarrow \ q'\equiv q \text{ or } q'q\equiv 1 \mod p.$

4-dim. Example: In this talk, we need only 2-handles. We do not draw 4-handles

A split sum describes a connected sum.

Dehn-Rolfsen move and Kirby calculus

Theorem (Dehn-Rolfsen moves, Kirby calculus)

The 3-manifolds are homeo. $M(L; \mathbf{n}) \cong M(L'; \mathbf{n}')$ framed links $(L; \mathbf{n}), (L'; \mathbf{n}')$ are moved to each other by \Leftrightarrow

(K1) Blow-up/down (K2) Handle slide

and isotopy.

(K1) Blow-up/ down

$$\emptyset \quad \rightleftharpoons \quad \bigcirc_{\pm 1}$$

is related to add/remove $\overline{\mathbb{C}P^2}$ or $\mathbb{C}P^2$

(K2) Handle slide

$$\mathit{n}_2' = \mathit{n}_2 \pm 2\mathrm{lk}(\mathit{h}_1, \mathit{h}_2) + \mathit{n}_1$$

Blow up in original sense (K1) + (K2)

ex. +1 twist

(3-dim.) "A meridian 0" cancels the surgery on the component. (4-dim.) "A meridian 0" means a \sharp summand $S^2 \times S^2$ or $S^2 \tilde{\times} S^2$.

1.3. Lens space surgery

Q. Which knots K yield a lens space by Dehn surgery?

$$M(K; n) = L(P, Q)?$$

Note that $n = \pm P$.

1. Torus knots

Theorem ([Moser '71])

$$M(T(p,q);pq\pm 1) = L(pq\pm 1,-p^2)$$

for each sign.

- 2. 2 cable of torus knots
- 3. Hyperbolic knots

 \rightarrow A Big Resarch!

[Saito-Teragaito] There exist some (a sequence of) pairs of knots

$$K \neq K'$$
 and $M(K; p) = L(p, q) = M(K'; p)$,

for all pairs of types (ex. torus-hyperbolic), except cable-cable, of knots K, K'.

They also studied some examples

$$K \neq K'$$
 and $M(K; p) = L(p, q) = -M(K'; p)$,

i.e., yielding orientation-reversed lens spaces.

1.3. Main Results

Our purpose is,

1. Study the 4-manifold

$$X^4(K;p) \cup \mp X^4(K';p).$$

In the case M(K; p) = -M(K'; p), the 4-manifold is 1-conn. and (the intersection form is) *definite*, thus is homeo. to $\pm (\mathbb{C}P^2 \sharp \mathbb{C}P^2)$, by Freedman's theorem.

2. Complete list of pairs (K, K') of torus knots s.t.

$$K \neq K'$$
 and $M(K; p) = L(p, q) = \pm M(K'; p)$,

Outline of Proof Introduction **TABLE** (Digest) ((S, T), (U, V)) is in [Saito-Teragaito] · Orientation-preserving (Bi-indexed by (a, i)) ((A, B), (C, D)) with P = AB + 1 = CD - 1 Orientation-reversing I (Indexed by i) ((S, T), (U, V)) with P = ST + 1 = UV - 1((s, t), (u, v)) with p = st + 1 = uv - 1 Orientation-reversing II (Indexed by *i*) ((K, L), (M, N)) with P = KL - 1 = MN - 1((k, l), (m, n)) with p = kl - 1 = mn - 1

Theorem (4-dim. problem)

For every pair of lens space surgeries along different torus knots yielding homeomorphic lens spaces,

$$K \neq K'$$
 and $M(K; p) = L(p, q) = \pm M(K'; p)$

the 4-manifold $X(K;p) \cup \mp X(K';p)$ is <u>diffeomorphic</u> to the standard 4-manifold

$$S^2 \times S^2$$
, $S^2 \tilde{\times} S^2$ or $\pm (\mathbb{C}P^2 \sharp \mathbb{C}P^2)$.

Corollary

Some Lens spaces can be smoothly embedded in $\mathbb{C}P^2 \sharp \mathbb{C}P^2$.

$$L(S_iT_i+1,S_i^2), \ L(K_iL_i-1,K_i^2) \hookrightarrow \mathbb{C}P^2 \sharp \mathbb{C}P^2.$$

 $L(s_it_i+1,s_i^2), \ L(k_il_i-1,k_i^2)$

[Sasahira] shows

$$L(28657,2) \qquad \nleftrightarrow \mathbb{C}P^2 \sharp \mathbb{C}P^2,$$

$$L(28657,7921) \qquad \hookrightarrow \mathbb{C}P^2 \sharp \mathbb{C}P^2.$$

"If p is prime and $p \equiv 1 \mod 16$, ..." L(28657, 7921) = M(T(199, 144), 28657) = -M(T(89, 322), 28657).

Theorem (The table is complete)

Suppose that

$$M(K;p) = L(p,q) = \pm M(K';p')$$

is a pair of integral lens space surgeries along torus knots K, K'. We retake K as K = T(a, b) with a, b > 0, by taking (K!; -p) instead of (K; p), and K' also.

Then the retaken pair ((K; p), (K'; p)) is in TABLE.

1		1			
	rn	α	\sim	 \sim	n

TABLE

TABLE

Introduction

TABLE

((A, B), (C, D)): Let a be an integer $a \ge 3$.

$egin{bmatrix} {\mathcal A}_0 \ {\mathcal B}_0 \end{bmatrix} = egin{bmatrix} -1 \ 1 \end{bmatrix},$							$\begin{bmatrix} C_0 \\ D_0 \end{bmatrix}$	$=\begin{bmatrix}1\\1\end{bmatrix}$				
$\begin{bmatrix} A_{i+1} \\ B_{i+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a-2 & 1 \end{bmatrix} \begin{bmatrix} C_i \\ D_i \end{bmatrix},$						$\begin{bmatrix} C_{i+1} \\ D_{i+1} \end{bmatrix} = \begin{bmatrix} 1 & a+2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A_i \\ B_i \end{bmatrix}.$						
[a = 3]						[<i>a</i> = 4]						
i	A	В	P	С	D		[<i>i</i>]	Δ	R	P	C	ח
1	1	2	3	4	1		1		2	1		
2	4	5	21	11	2	ĺ	1	1	3	4	5	L
2	11	13	144	20	5	ł	2	5	11	56	19	3
	11	15	177	29	5		3	19	41	780	71	11
4	29	34	378	/6	13		Δ	71	153	10864	265	41
5	76	89	3117	199	34		-	11	155	1000+	203	71
:			:				÷			:		
· ·	1		•				· · · ·					•

P = AB + 1 = CD - 1, $B^2 \equiv D^2 \mod P$

Introduction

TABLE

((S, T), (U, V)) [Saito-Teragaito]

P = ST + 1 = UV - 1, $T^2 + U^2 \equiv 0 \mod P$

((s,t),(u,v))

$$\begin{bmatrix} s_0 \\ t_0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad \begin{bmatrix} u_0 \\ v_0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix},$$
$$\begin{pmatrix} s_{i+1} \\ t_{i+1} \end{pmatrix} = \begin{pmatrix} t_i \\ s_i + 2v_i \end{pmatrix}, \qquad \begin{pmatrix} u_{i+1} \\ v_{i+1} \end{pmatrix} = \begin{pmatrix} v_i \\ 2t_i + u_i \end{pmatrix}.$$

i	S	t	р	u	V
0	0	1	1	1	2
1	1	4	5	2	3
2	4	7	29	3	10
3	7	24	169	10	17
4	24	41	985	17	58
5	41	140	5741	58	99
6	140	239	33461	99	338
:			:		

 $p = st + 1 = uv - 1, \quad t^2 + u^2 \equiv 0 \mod P$

TABLE

((K, L), (M, N)) Using a sequence $\{b_i\}$ defined by

$$b_1 = 1, \ b_2 = 2, \ b_{i+1} = 3b_i - b_{i-1} \ (i \ge 2),$$

we define a pair $((K_i, L_i), (M_i, N_i))$ by

$$((K_i, L_i), (M_i, N_i)) = ((b_i, 3b_{i+1}), (b_{i+1}, 3b_i)).$$

i	K	L	P	M	Ν
1	1	6	5	2	3
2	2	15	29	5	6
3	5	39	194	13	15
4	13	102	1325	34	39
5	34	267	9077	89	102
:			:		

P = KL - 1 = MN - 1, $K^2 + M^2 \equiv 0 \mod P$

TABLE

((k, l), (m, n)) Using a sequence $\{d_i\}$ defined by

$$d_1 = 1, \ d_2 = 3, \quad d_{i+1} = 4d_i - d_{i-1} \ (i \ge 2),$$

we define a pair $((k_i, l_i), (m_i, n_i))$ by

$$((k_i, l_i), (m_i, n_i)) = ((d_i, 2d_{i+1}), (d_{i+1}, 2d_i)).$$

i	k	1	р	m	n
1	1	6	5	3	2
2	3	22	65	11	6
3	11	82	901	41	22
4	41	36	12545	153	82
5	153	1142	174725	571	306
:			:		

 $p = kl - 1 = mn - 1, \quad k^2 + m^2 \equiv 0 \mod P$

Lens space surgeries along Torus knots

dualize

For a general T(p, q), we use

$$ps - qr = 1,$$
 $0 < r < p, 0 < s < q$

Outline of Proof

First of all, I want to say

Each family has its own personality

((A,B),(C,D))

((S,T),(U,V))

((K, L), (M, N))

4.1. Table gives the pairs

Lemma

The pairs (A_i, B_i) and (C_i, D_i) satisfy the followings:

(1) Each pair
$$(A_i, B_i)$$
 and (C_i, D_i) is coprime.

(2)
$$A_iB_i + 1 = C_iD_i - 1$$
. We call this integer P_i .

(3)
$$B_i^2 \equiv D_i^2 \mod P_i$$
.

(4) If $a \ge 3$ and $i \ge 2$, then $B_i^{4} \not\equiv \pm 1 \mod P_i$.

TABLE

TABLE ((A, B), (C, D)) and Definition (again).

	[a = 3]									
ſ	i	A	В	Р	С	D				
ſ	1	1	2	3	4	1				
ſ	2	4	5	21	11	2				
ſ	3	11	13	144	29	5				
ſ	4	29	34	378	76	13				
ſ	5	76	89	3117	199	34				
ſ	÷			:						

[a = 4]

$$\begin{bmatrix} A_{i+1} \\ B_{i+1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ a-2 & 1 \end{bmatrix} \begin{bmatrix} C_i \\ D_i \end{bmatrix}, \qquad \begin{bmatrix} C_{i+1} \\ D_{i+1} \end{bmatrix} = \begin{bmatrix} 1 & a+2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} A_i \\ B_i \end{bmatrix}.$$

Lemma (ABCD's Sublemma)

The pairs (A_i, B_i) and (C_i, D_i) satisfy the followings: (1) $A_i + B_i - C_i + D_i = 0.$ (2) $(a-1)A_i - B_i - C_i + (a+1)D_i = 0.$ (3) Each of A_i, B_i, C_i and D_i satisfies the same recursive formula: $\mathcal{X}_{i+2} = a\mathcal{X}_{i+1} - \mathcal{X}_i, \quad \text{for } \mathcal{X} = A, B, C, \text{ or } D.$ (5) For any pair $(\mathcal{X}, \mathcal{Y})$ in $\{A, B, C, D\}$, $\mathcal{X}_{i+1}\mathcal{Y}_i - \mathcal{Y}_{i+1}\mathcal{X}_i$ is constant, i.e., does not depend on i. For example, $A_{i+1}B_i - B_{i+1}A_i = a$ and $A_{i+1}D_i - D_{i+1}A_i = 2$.

(6) $B_i^2 - D_i^2 = (a-2)P_i$

4.2. Proof of 4-dim. Problem.

First 3-dim. calculus: Where is the dual knot? Where is the other dual knot?

Next 4-dim. calculus: Only handle slides.

Definition (Cable of Hopf link)

We define a two-component link

$$T((p_z,q_z),(p_w,q_w)) := T_z(p_z,q_z) \cup T_w(q_w,p_w),$$

 $T_z(p_z, q_z)$ is a torus knot $p_z[I_z] + q_z[m_z]$ in T_z , and $T_w(p_w, q_w)$ is a torus knot $q_w[I_w] + p_w[m_w]$ in T_w . Their linking number is $p_z q_w$.

Lemma (parallel tori)

If a framed chain link below describes S^3 , any pair $m_i \cup m_j$ of meridians is a link of type $T((p_z, q_z), (p_w, q_w))$.

TABLE

For ((A(a, i), B(a, i)), (C(a, i), D(a, i)))Case i = 2j is even,

Case
$$i = 2j + 1$$
 is odd,

There is a symmetry.

Lemma (3-dim part : Pull back of the other dual knot)

The 4-manifold $X_{AB} \cup (-X_{CD})$ is described by the framed link

 $(T((A_i, B_i), (A_{i-1}, B_{i-1})); P_i, P_{i-1})$

In other words, the 2-handle $(h_{CD}^2)^{\perp}$ of $(-X_{CD})$ comes to the component $(T_w(B_{i-1}, A_{i-1}); P_{i-1})$.

Lemma (4-dim part : Kirby calculus)

There exists a sequence of handle-slides from

$$(T((A_i, B_i), (A_{i-1}, B_{i-1})); P_i, P_{i-1})$$
 to
 $(T((A_{i-1}, B_{i-1}), (A_{i-2}, B_{i-2})); P_{i-1}, P_{i-2})$

In other words, as 4-*dim Kirby diagrams, they describe the same* 4-*manifold.*

Proof. For a framed link in $T^2 \times [-1.5, 1.5]$

 $(K; r) = (l(p, q)[-1]; r), \quad (K_0; r_0) = (l(p_0, q_0)[0]; \varepsilon).$

On the handle-slides of K over K_0 , we have:

Lemma (Framed link in T^2)

There exists a sequence of handle-slides of K over K_0 whose result is $(K_0; +1) \cup (K'; r')$ with

$$(\mathcal{K}'; \mathbf{r}') = (I(\mathbf{p} - \varepsilon \Delta \mathbf{p}_0, \mathbf{q} - \varepsilon \Delta \mathbf{q}_0)[+1]; \mathbf{r}),$$

where $\Delta := p_0 q - q_0 p$.

Essentially, Picard-Lefshetz Theorem. K_0 acts on K as a Dehn twist $D_{K_0}^{\varepsilon}$.

Handle slides in $T^2 \times I$

4.3. Proof of Completeness of the Table ((S, T), (U, V)), ((s, t), (u, v)) case

Suppose that a given pair ((S, T), (U, V)) satisfies Condition L'

(0) (S, T) and (U, V) are coprime.

(1) ST + 1 = UV - 1. We call this number P.

and also assume (by switching the entries if necessary) :

(2)
$$S^2 + V^2 \equiv 0 \mod P$$
 (and $T^2 + U^2 \equiv 0 \mod P$).

(3) $\min\{S, T, U, V\} = S$ or $\min\{S, T, U, V\} = U$. Possibly both (and S = U) hold.

By (2), define integers a, b by $S^2 + V^2 = aP$ and $T^2 + U^2 = bP$.

Definition (Reduction of a pair)

For a given pair ((S, T), (U, V)) satisfying Condition L' (1), (2), (3) and min $\{S, T, U, V\} > 2$, we define a pair ((S', T'), (U', V')) by

$$\begin{cases} S' = T - xU \\ T' = S \\ U' = V - xS \\ V' = U \end{cases} \text{ with } x = [T/U] = [V/S].$$

We call this operation from ((S, T), (U, V)) to ((S', T'), (U', V')) reduction.

Note that (S', T'), (U', V') are possibly not coprime.

We can estimate
$$c = x = (TV - SU)/P$$
.

$$ab = c^2 + 4.$$

Lemma (Reduction keeps data until finish)

((S', T'), (U', V')) also satisfies Condition L' (1), (2), (3) and $\{a', b'\} = \{b, a\}, \quad x' = x.$

Either

(1) It is the final reduction with $\min\{S', T', U', V'\} \le 2$ below,

$$egin{aligned} (1,1,1,3), (1,1,3,1), (1,4,2,3), (1,4,3,2), (4,3,2,7), \ &(2,2,6,1), (2,14,6,5), \ &(s,s,1,s^2+2), (s,4s,2,2s^2+1), \ &(s>1), \end{aligned}$$

(II) It still satidfies $\min\{S', T', U', V'\} > 2$.

Thank you very much!