Introduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

Difficulty on divide knot presentation of Type 8 knots in Berge's lens space surgery

Yuichi YAMADA (Univ. of Electro-Comm. Tokyo)

Four Dimensional Topology

Nov. 14 2021 Osaka University (Online via zoom)

	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)

1 Introduction

Introduction	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
•000000000	00000000	0000	000000
§1. Dehn s	surgery		

Dehn surgery = Cut and paste of a soliod torus.

$$(K; p) := (S^3 \setminus \text{open nbd}N(K)) \cup_{\partial} \text{ Solid torus.}$$

Coefficient (in **Z**) "framing" = a *parallel* curve ($\subset \partial N(K)$) of K, or the linking number.

Solid torus is reglued such as "the meridian comes to the parallel"

Introduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
00000000	0000000	0000	000000

Theorem ([Lickorish '62])

Any closed connected oriented 3-manifold M is obtained by a framed link (L, \mathbf{p}) in S³, ie, $M = (L; \mathbf{p})$, $(L, \mathbf{p}) = (K_1, p_1) \cup (K_2, p_2) \cup \cdots \cup (K_n, p_n).$

Lens space L(p,q) (p > q > 0)

Introduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

Theorem (Kirby-Rolfsen moves (Fenn-Rourke's ver.))

The 3-manifolds are homeo. $(L; \mathbf{p}) \cong (L'; \mathbf{p}')$ \Leftrightarrow framed links $(L, \mathbf{p}), (L', \mathbf{p}')$ are moved to each other by isotopy and the following

Note: This (with a suitable sign) is blow-down /up, related to resolution of the singularity.

Kirby diagrams also present 4-manifolds (2-handle attachings).

Introduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

Starting example of lens space surgery [Fintushel–Stern '80] Which knot yields a lens space by Dehn surgery?

What is the best method to prove it?

Introduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

My answer ([Y '05]) :

blue \cup green = S^3 , and red becomes the knot P(-2, 3, 7). The knot is constructed by seq. of full-twists = blow-downs.

Introduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

In 2000, I heard A'Campo's divide theory (from Singularity theory)

a plane Curve
$$P \Rightarrow$$
 a Link $L(P)$ in S^3
A'Campo's divide knots ['75]

Typical example of my results in [Y '05~'20].

Introduction	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
0000000000		

Examples. These examples presents knots of lens space surgery.

Here, green edge means adding square(s).

Introduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
0000000000	0000000	0000	000000

We focus on curves cut from the lattice

Assume (on the regions, a union of rectangles) \cdot Vertices are in $\textbf{Z}^2 \subset \textbf{R}^2,$

- · Edges of the region are *vertical* or *horizontal*,
- · Every concave point is at odd point, and
- · The curve P is an immersed arc ($\Leftrightarrow L(P)$ is a knot).

where we call a point $(m, n) \in \mathbb{Z}^2$ odd if $m + n \equiv 1 \mod 2$

roduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

Berge's list ('90) Berge classfied and made a list of known lens space surgery.

Theorem (not published)

Every knot in Berge's list of lens space surgery is a divide knot.

Berge's list Berge's list consists of **3** Subfamilies (1)(2)(3) and of **12 Types**.

Type VIII is difficult!

troduction		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
00000000	0000000	0000	000000

By another approach (Heegarrd Floer homology, \mathbb{C} -links by Rudolph \cdots),

Theorem (Hedden '11)

Any knots of lens space surgery is intersection of an algebraic surface and B^4 in \mathbb{C}^2 .

Theorem (Greene '13 : Lens space Realization Problem)

Lens spaces of lens space surgeries are classified. Berge's list is complete, up to Heegaad Floer homology.

 $(P; 19) \\ S^{3} \begin{cases} \overbrace{\bigcirc \bigcirc \bigcirc 0}^{-2} & -3 & -2 & -3 \\ \overbrace{\bigcirc \bigcirc \bigcirc 0}^{-2} & -1 & -1 \end{cases}$

cf. Donaldson's diagonalization.

Γ	1	$^{-1}$	0	0	ر0
l	0	$^{-1}$	$^{-1}$	0	1
l	0	0	$^{-1}$	1	0
l	1	1	$^{-1}$	0	0
L	1	1	2	2	3

	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	•000000	0000	000000

§2. A'Campo's divide knots

Original construction.

a generic plane Curve
$$P$$
 \Rightarrow a Link $L(P)$ in S^3
A'Campo's divide knots

Let P be a generic (no self-tangency) curve in the unit disk D,

$$S^{3} = \{(u, v) \in TD | u \in D, v \in T_{u}D, |u|^{2} + |v|^{2} = 1\}$$

$$L(P) := \{(u, v) \in TD | u \in P, v \in T_{u}P, |u|^{2} + |v|^{2} = 1\} \subset S^{3}.$$

$$y^2 = x(x^2 - \varepsilon)(x^2 - 2\varepsilon)$$

· A strong-involution $\iota : (u, v) \mapsto (u, -v)$.

	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

Ex. Torus links ['02 Goda-Hirasawa-Y, (Gusein-Zade, etc.)] P = B(p, q), the $p \times q$ rectangle billiard curve (PL curve with slope ± 1 in the rectangle.) $\Rightarrow L(P)$ is T(p, q)

If gcd(p,q) = 1, then B(p,q) has $\frac{(p-1)(q-1)}{2}$ double points.

Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
0000000		

Basics on Divide knots [N.A'Campo, L.Rudolph,..]

- (0) L(P) is a knot $(\sharp L(P) = 1) \Leftrightarrow P$ is an immersed arc.
- (1) The genus of knot L(P) = # double points of P.
- (2) For knots $L(P_1)$ and $L(P_2)$, $lk(L(P_1), L(P_2)) = \#(P_1 \cap P_2)$.
- (3) Every divide knot L(P) is **fibered**.
- (4) Any divide knot is a closure of *strongly quasi-positive* braid.
 ie, product of some σ_{ij}.
- (5) $P_1 \sim P_2$ by Δ -move $\Rightarrow L(P_1) = L(P_2)$.

	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

These curves present the same knot P(-2, 3, 7) (Thanks to Hirasawa)

19 and 18 are the coefficients of lens space surgery.

Introduction	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
	00000000		

['01 Couture-Perron] proved a viauallization.

 $\begin{array}{|c|c|c|c|c|c|c|c|} \hline an OMD P \Rightarrow & a knot L(P) in S^3 \\ \hline Braid presentation of L(P) \end{array}$

"Ordered Morse divide (OMD)" [Couture]

A divide is called OMD if (w.r.t at least one direction) max/min points are in the same level, up to isotopy.

⇐ This is a Non-OMD. (w.r.t horizontal nor vertical direction)

Introduction 000000000	Divide knots 00000●00	Berge knots ar 0000		Results (Divide presentation of Type 8 knots)
5 1 1 1				
['01 Couti	u re-Perronj p	roved a visua	alized version	
	an OMD	$P \Rightarrow$	a knot $L(P)$ in	$ S^3 $
	В	raid presenta	ation of $L(P)$	

The braid presentation of L(P).

We get the fiber surface of L(P). genus = 5.

	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	00000000	0000	000000

The result is $W_4 {}^3 W_3 {}^2$, where $W_n := \sigma_{n-1} \sigma_{n-2} \cdots \sigma_2 \sigma_1 \quad ``1/n \text{ twist"}.$

Simple, only for L-shaped cases.

	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

Lemma (Y)

"Adding a square" corresponds to a right-handed full-twist = blow-down = coord. transform: (x, y) = (X, Y/X). (ex. $y^2 = x + \epsilon$ becomes $Y^2 = X^2(X + \epsilon)$)

 Introduction
 Divide knots
 Berge knots are divide knots
 Results (Divide presentation of Type 8 knots)

 000000000
 00000000
 0000000
 0000000

§3. Berge knots are divide knots

Which (K; p) is a lens space?

Berge's doubly-primitive knots ['90]

A knot K in the Heegaard surface Σ_2 is doubly-primitive iff

 K_{\sharp} (as in π_1) is a generator in both $\pi_1(H_2)$ and $\pi_1(-H_2)$.

Such a knot K with the surface slope (coeff.) always yields a lens space.

Berge's list

Berge classfied and made a list of such knots. His list consists of **3** Subfamilies (1)(2)(3)and of **12 Types**.

roduction	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
DOOOOOOOO	00000000	○●○○	000000

Theorem (Y '07 \sim '20)

Every knot in Berge's list, up to mirror image, is a divide knot. Except Type VIII, it is presented by an (a general.) L-shaped curve.

Subfamily (1). [Y '09]. Every knot (up to mirror image) in the subfamily (1), Typel, II, III ··· VI, · is a divide knot, · is presented by an L-shaped curve.

Area(
$$L$$
) – coeff. = 0 or 1.

ex. TypeIII knots are parametrized by

 $\delta, \varepsilon \in \{\pm 1\}, \ A(\geq 2), \ k(\geq 0) \text{ and } t \in \mathbf{Z}.$

P(-2,3,7) (with 18-surgery) is $k_{III}(-1,+1,2,0,0)$, ie, A = 2, k = t = 0.

Introduction	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
		0000	

Subfamily (3). [Y '20] Type IX and X The knot $k_{IX}(j)$ and $k_{X}(j)$, $(j \in Z)$

• is a divide knot, • is presented by a general. L-shaped curve. • is obtained from L-shaped T(j, 2j + 1) by full-twists twice.

for Type**IX**, in order (bottom, left), $p = 22j^2 + 9j + 1$, for Type**X**, in order (left, bottom), $p = 22j^2 + 13j + 2$.

· It is known $k^{-}(a, b) = k^{-}(b - a, b)$.

['05 Baker]'s deformation.

On divide knots, negative twists are hard to treat with.

Conj. $k^{-}(a, b)$ is presented by a blow down along *the bottom edge* from a **T-shaped curve** of height *a*, width *b* and presenting T(a, b - a).

roduction Divide knots Berge knots are divide knots **Results (Divide presentation of Type 8 knots)**

Conj. $k^{-}(a, b)$ is presented by a blow down along the bottom edge from a **T-shaped curve** of height *a*, width *b* presenting T(a, b - a).

Fact (Main Results [Y])

There exist only five **T-shaped curves** of height 4, width 11 and presenting a knot with g = 9 = g(T(4,7)). No one is T(4,7), except the trivial one. \Rightarrow **Conj.** is false.

Introduction	Divide knots	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
0000000000	00000000	0000	000●00
Final Rem	arks.		

Question (1)

Decide the best divide presentation, for every knots (Type**VIII**) in Berge's list of lens space surgery.

Question (2)

How about the other exceptional surgeries?

Question (3) (by J.Greene)

Restricted to divide knots, is Berge's conj. true?

Question (4)

Plane curves with cusp as divide [Sugawara-Yoshinaga]

	Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
		000000

謝辞

I would like to thank to

Lens space surgery

合田洋 先生、茂手木公彦 先生、寺垣内政一 先生、Ken Baker 氏、

Divide knots

N. A'Campo 先生、石川昌治 氏、川村友美 氏、平澤美可三 氏、

O. Couture 氏、

		Berge knots are divide knots	Results (Divide presentation of Type 8 knots)
000000000	0000000	0000	000000

Thank you very much!