Difficulty on divide knot presentation of Type 8 knots in Berge's lens space surgery

Yuichi YAMADA (Univ. of Electro-Comm. Tokyo)

Four Dimensional Topology

Nov. 142021
Osaka University (Online via zoom)
(1) Introduction
(2) Divide knots

3 Berge knots are divide knots
(4) Results (Divide presentation of Type 8 knots)

§1. Dehn surgery

Dehn surgery $=$ Cut and paste of a soliod torus.

$$
(K ; p):=\left(S^{3} \backslash \text { open } \operatorname{nbd} N(K)\right) \cup_{\partial} \text { Solid torus. }
$$

Coefficient (in Z) "framing" = a parallel curve $(\subset \partial N(K))$ of K, or the linking number.
Solid torus is reglued such as "the meridian comes to the parallel"

Theorem ([Lickorish '62])

Any closed connected oriented 3-manifold M is obtained by a framed link (L, \mathbf{p}) in $S^{3}, i e, M=(L ; \mathbf{p})$,

$$
(L, \mathbf{p})=\left(K_{1}, p_{1}\right) \cup\left(K_{2}, p_{2}\right) \cup \cdots \cup\left(K_{n}, p_{n}\right) .
$$

Lens space $L(p, q) \quad(p>q>0)$

$$
\frac{p}{q}=a_{1}-\frac{1}{a_{2}-\frac{1}{a_{3}-\ddots-\frac{1}{a_{n}}}}
$$

Theorem (Kirby-Rolfsen moves (Fenn-Rourke's ver.))

The 3-manifolds are homeo. $(L ; \mathbf{p}) \cong\left(L^{\prime} ; \mathbf{p}^{\prime}\right)$
\Leftrightarrow framed links $(L, \mathbf{p}),\left(L^{\prime}, \mathbf{p}^{\prime}\right)$ are moved to each other by isotopy and the following

Note: This (with a suitable sign) is blow-down / up, related to resolution of the singularity.

Kirby diagrams also present 4-manifolds (2-handle attachings).

Starting example of lens space surgery [Fintushel-Stern '80] Which knot yields a lens space by Dehn surgery?

What is the best method to prove it?

My answer ([Y'05]) :

blue \cup green $=S^{3}$, and red becomes the knot $P(-2,3,7)$.
The knot is constructed by seq. of full-twists $=$ blow-downs.

In 2000, I heard A'Campo's divide theory (from Singularity theory)

$$
\begin{array}{|c|}
\hline \text { a plane Curve } P \\
\text { A'Campo's divide }
\end{array} \Rightarrow \text { a Link } L(P) \text { in } S^{3}
$$

Typical example of my results in [Y '05~'20].

18 -surgery is
$\mathrm{L}(18,-7)$

Examples. These examples presents knots of lens space surgery.

- L-shaped curve I~VII • (general.) L-shaped curve IX~XII

- T-shaped curve VIII

Here, green edge means adding square(s).

We focus on curves cut from the lattice
Assume (on the regions, a union of rectangles)

- Vertices are in $\mathbf{Z}^{2} \subset \mathbf{R}^{2}$,
- Edges of the region are vertical or horizontal,
- Every concave point is at odd point, and
- The curve P is an immersed arc $(\Leftrightarrow L(P)$ is a knot).
where we call a point $(m, n) \in \mathbf{Z}^{2}$ odd if $m+n \equiv 1 \bmod 2$

Berge's list ('90) Berge classfied and made a list of known lens space surgery.

Theorem (not published)

Every knot in Berge's list of lens space surgery is a divide knot.

Berge's list

 Berge's list consists of 3 Subfamilies (1)(2)(3) and of 12 Types.

Type VIII is difficult!

By another approach (Heegarrd Floer homology, \mathbb{C}-links by Rudolph ...),

Theorem (Hedden '11)

Any knots of lens space surgery is intersection of an algebraic surface and B^{4} in \mathbb{C}^{2}.

Theorem (Greene '13: Lens space Realization Problem)

Lens spaces of lens space surgeries are classified.
Berge's list is complete, up to Heegaad Floer homology.
$(P ; 19)$

cf. Donaldson's diagonalization.

$$
\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & 1 \\
0 & 0 & -1 & 1 & 0 \\
1 & 1 & -1 & 0 & 0 \\
1 & 1 & 2 & 2 & 3
\end{array}\right]
$$

§2. A'Campo's divide knots

Original construction.

A'Campo's divide knots
Let P be a generic (no self-tangency) curve in the unit disk D,

$$
\begin{aligned}
& S^{3}=\left\{(u, v) \in T D\left|u \in D, v \in T_{u} D,|u|^{2}+|v|^{2}=1\right\}\right. \\
& L(P):=\left\{(u, v) \in T D\left|u \in P, v \in T_{u} P,|u|^{2}+|v|^{2}=1\right\} \subset S^{3} .\right.
\end{aligned}
$$

$$
y^{2}=x\left(x^{2}-\varepsilon\right)\left(x^{2}-2 \varepsilon\right)
$$

- A strong-involution $\iota:(u, v) \mapsto(u,-v)$.

Ex. Torus links ['02 Goda-Hirasawa-Y, (Gusein-Zade, etc.)]
$P=B(p, q)$, the $p \times q$ rectangle billiard curve (PL curve with slope ± 1 in the rectangle.)

$$
\Rightarrow \quad L(P) \text { is } T(p, q)
$$

ex. $(p, q)=(7,4)$

If $\operatorname{gcd}(p, q)=1$, then $B(p, q)$ has $\frac{(p-1)(q-1)}{2}$ double points.

Basics on Divide knots [N.A'Campo, L.Rudolph,..]
(0) $L(P)$ is a $k n o t(\sharp L(P)=1) \Leftrightarrow P$ is an immersed arc.
(1) The genus of knot $L(P)=\sharp$ double points of P.
(2) For knots $L\left(P_{1}\right)$ and $L\left(P_{2}\right), \operatorname{lk}\left(L\left(P_{1}\right), L\left(P_{2}\right)\right)=\sharp\left(P_{1} \cap P_{2}\right)$.
(3) Every divide knot $L(P)$ is fibered.
(4) Any divide knot is a closure of strongly quasi-positive braid.
ie, product of some $\sigma_{i j}$.
(5) $P_{1} \sim P_{2}$ by Δ-move $\Rightarrow L\left(P_{1}\right)=L\left(P_{2}\right)$.

These curves present the same knot $P(-2,3,7)$ (Thanks to Hirasawa)

19 and 18 are the coefficients of lens space surgery.
['01 Couture-Perron] proved a viauallization.

$$
\begin{array}{|c|}
\hline \text { an OMD } P \\
\text { Braid presentation of } L(P) \text { in } S^{3} \\
\hline
\end{array}
$$

"Ordered Morse divide (OMD)" [Couture]

A divide is called $O M D$
if (w.r.t at least one direction) max/min points are in the same level, up to isotopy.

\Leftarrow This is a Non-OMD.
(w.r.t horizontal nor vertical direction)
['01 Couture-Perron] proved a visualized version

$$
\frac{\text { an OMD } P}{\text { Braid presentation of } L(P) \text { in } S^{3}} \Rightarrow \quad \text { a knot }
$$

The braid presentation of $L(P)$.

We get the fiber surface of $L(P) . \quad$ genus $=5$.

The result is $W_{4}{ }^{3} W_{3}{ }^{2}$, where

$$
W_{n}:=\sigma_{n-1} \sigma_{n-2} \cdots \sigma_{2} \sigma_{1} \quad \text { " } 1 / n \text { twist". }
$$

Simple, only for L-shaped cases.

Lemma (Y)

"Adding a square" corresponds to a right-handed full-twist
$=$ blow-down $=$ coord. transform: $(x, y)=(X, Y / X)$.
(ex. $y^{2}=x+\epsilon$ becomes $Y^{2}=X^{2}(X+\epsilon)$)

§3. Berge knots are divide knots

Which $(K ; p)$ is a lens space?
Berge's doubly-primitive knots ['90]
A knot K in the Heegaard surface Σ_{2} is doubly-primitive iff

$$
\begin{aligned}
& K_{\sharp}\left(\text { as in } \pi_{1}\right) \text { is a generator } \\
& \text { in both } \pi_{1}\left(H_{2}\right) \text { and } \pi_{1}\left(-H_{2}\right) .
\end{aligned}
$$

Such a knot K with the surface slope (coeff.) always yields a lens space.

Berge's list
Berge classfied and made a list of such knots. His list consists of 3 Subfamilies (1)(2)(3) and of 12 Types.

Theorem (Y '07~'20)

Every knot in Berge's list, up to mirror image, is a divide knot. Except Type VIII, it is presented by an (a general.) L-shaped curve.

Subfamily (1). [Y '09].
Every knot (up to mirror image)
in the subfamily (1), TypeI, II, III ... VI,

- is a divide knot, . is presented by an L-shaped curve.

$$
\operatorname{Area}(L)-\text { coeff. }=0 \text { or } 1
$$

ex. Typelll knots are parametrized by

$$
\delta, \varepsilon \in\{ \pm 1\}, A(\geq 2), \quad k(\geq 0) \text { and } t \in \mathbf{Z} .
$$

$P(-2,3,7)$ (with 18 -surgery) is $k_{\text {III }}(-1,+1,2,0,0)$, ie, $A=2, k=t=0$.

Subfamily (3). [Y '20] Type IX and X
The knot $k_{\mathbf{I X}}(j)$ and $k_{\mathbf{X}}(j),(j \in \mathbf{Z})$

- is a divide knot, . is presented by a general. L-shaped curve.
- is obtained from L-shaped $T(j, 2 j+1)$ by full-twists twice.
for TypelX, in order (bottom, left), $p=22 j^{2}+9 j+1$, for TypeX, in order (left, bottom), $p=22 j^{2}+13 j+2$.

Subfamily (2-1). [Y'05] TypeVII

Let F^{+}be the fiber surface of the left-handed trefoil.

- [Y'10] Any TypeVII knot is $k^{+}(a, b)$ in F^{+} with a positive coprime (a, b) s.t. $0<a<b$.

Its p-surgery is $L(p, q) . \quad\left(p=a^{2}+a b+b^{2}, q=-(a / b)^{2} \bmod p\right)$. is a divide knot, . is presented by an L-shaped curve.

- $k^{+}(2,3)$ is $P(-2,3,7) . \quad 2^{2}+2 \cdot 3+3^{2}=19$.

Theorem (2-2). TypeVIII

Let F^{-}be the fiber surface of fig8 knot.

- [Y'10] Any TypeVIII knot is $k^{-}(a, b)$, with a positive coprime (a, b) s.t. $0<a<b / 2$.
Its p-surgery is $L(p, q) .\left(p=-a^{2}+a b+b^{2}, q=-(a / b)^{2} \bmod p\right)$
- is a divide knot $\quad \mathbf{Q}$. What type of curves?
- It is known $k^{-}(a, b)=k^{-}(b-a, b)$.
['05 Baker]'s deformation.

On divide knots, negative twists are hard to treat with.

- $k^{-}(a, b)$ is a divide knot. The plane curve is constructed by a blow-down from $B(a, b-a)$ along the broken curve.
ex. Blow-down from $T(2,3)$ to $k^{-}(2,5)$.
Couture's move

Conj. $k^{-}(a, b)$ is presented by a blow down along the bottom edge from a \mathbf{T}-shaped curve of height a, width b and presenting $T(a, b-a)$.

Conj. $k^{-}(a, b)$ is presented by a blow down along the bottom edge from a T-shaped curve of height a, width b presenting $T(a, b-a)$.

Fact (Main Results [Y])

There exist only five T-shaped curves of height 4, width 11 and presenting a knot with $g=9=g(T(4,7))$. No one is $T(4,7)$, except the trivial one. $\quad \Rightarrow$ Conj. is false.

Final Remarks.

Question (1)

Decide the best divide presentation, for every knots (TypeVIII) in Berge's list of lens space surgery.

Question (2)

How about the other exceptional surgeries?

Question (3) (by J.Greene)

Restricted to divide knots, is Berge's conj. true?

Question (4)

Plane curves with cusp as divide [Sugawara-Yoshinaga]

㛛辞
I would like to thank to
Lens space surgery
合田洋 先生，茂手木公彦 先生，寺垣内政一 先生，Ken Baker 氏，
Divide knots
N．A＇Campo 先生，石川昌治 氏，川村友美 氏，平澤美可三 氏，
O．Couture 氏，

Thank you very much!

