「低次元幾何学 と 無限次元幾何学」 '07 Sept. 12

Generalized rational blow-down and Euclidean Algorithm

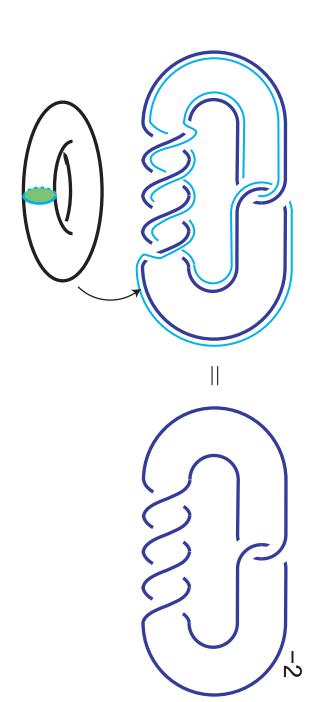
山田 裕一 (電気通信大学)

今日の標語.

Lens space surgery 族 に潜む特異点解消 - Euclidean Algorithm-

§0. Dehn surgery, Kirby Calculus

such as "the meridian comes to the parallel" ing number. Remove and Reglue Solid torus along each component **Dehn surgery** coefficient = Framing = a parallel curve, or the link-



Thm. [Lickorish '62]

link L in S^3 . Notation: M(L), or (K; p). Any closed connected oriented 3-manifold is obtained by a framed

Framed Links for Lens L(p,q)

$$\frac{p}{q} = a_1 - \frac{1}{a_2 - \frac{1}{a_3 - \dots - \frac{1}{a_n}}} \qquad (a_i > 1)$$

$$-a_1 - a_2 - a_3 - \dots - \frac{1}{a_n}$$

$$-a_n$$

$$1 = 18$$

$$L(18,11) (= L(18,5)) \quad \frac{18}{11} = 2 - \frac{1}{3}, \quad \frac{18}{5} = 4 - \frac{1}{3}$$

$$3 - \frac{1}{4}, \quad \frac{18}{5} = 4 - \frac{1}{3}$$

$$3 - \frac{1}{4}, \quad \frac{18}{5} = 4 - \frac{1}{3}$$

$$3 - \frac{1}{4}, \quad \frac{18}{5} = 4 - \frac{1}{3}$$

$$3 - \frac{1}{4}, \quad \frac{18}{5} = 4 - \frac{1}{3}$$

$$3 - \frac{1}{4}, \quad \frac{18}{5} = 4 - \frac{1}{3}$$

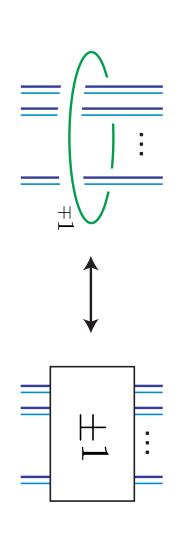
$$3 - \frac{1}{4}, \quad \frac{18}{5} = 4 - \frac{1}{3}$$

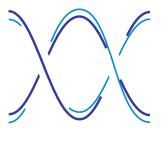
101

Thm. Kirby Calclus ([Fenn-Rourke] ver.)

Framed links L_1, L_2 are moved to each other as below and isotopy,

$$\Leftrightarrow M(L_1) \cong M(L_2).$$





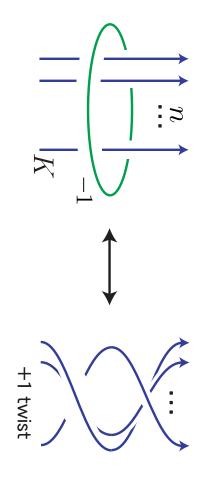
ex. +1 twist

Thm. Kirby Calclus ([Fenn-Rourke] ver.)

 $\Leftrightarrow M(L_1) \cong M(L_2)$ Framed links L_1, L_2 are moved to each other as below and isotopy,

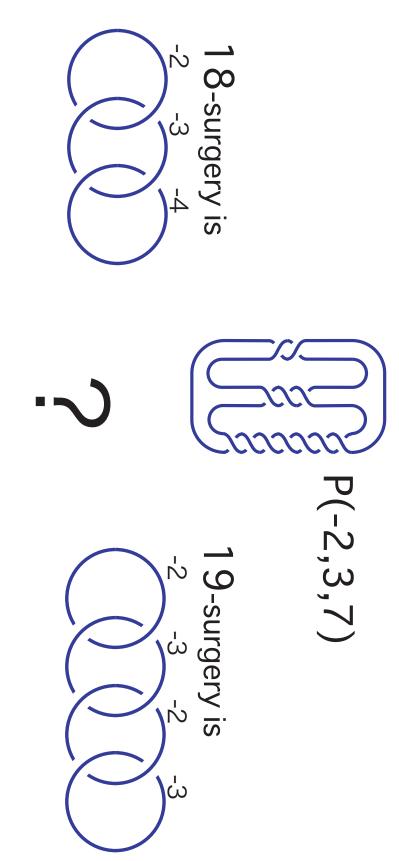
$$\begin{array}{c|c} & & & & & \\ & & & & \\$$

Special case: If the blue is connected (K) and orientations are same,



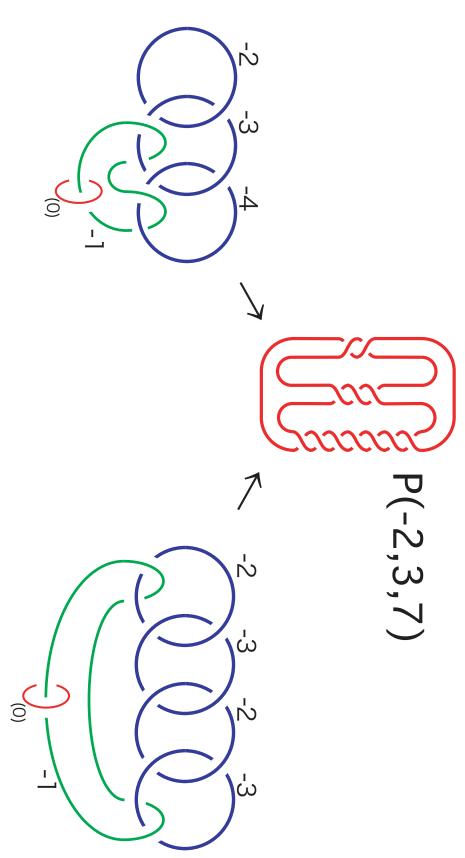
The framing inclease by n^2 .

Q. 証明できる



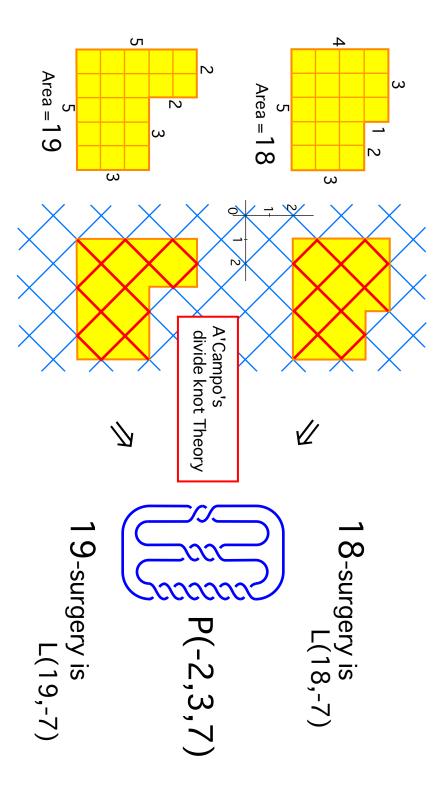
とはいうものの...

Answer. [Fintushel-Stern]([Y])



They are related to Resolution!

§1. My reserach. Lens space surgery.

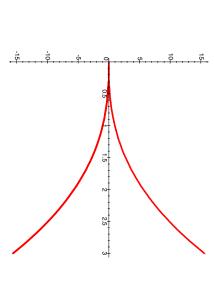


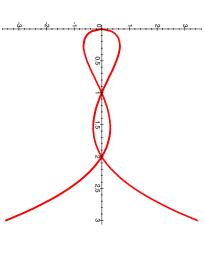
A'Campo's "divide knot theory" comes from singularity.

A'Campo's divide knots: Singularity

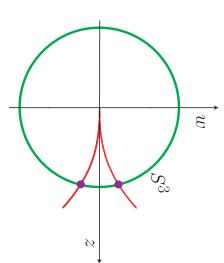
In \mathbb{R}^2 , purterb $y^2 = x^{2n+1}$ (" A_{2n} -sing.") and Draw the plane curve:

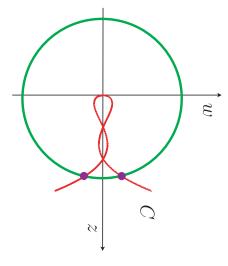
$$C: y^2 = x(x - \epsilon)^2 (x - 2\epsilon)^2 \cdots (x - n\epsilon)^2$$





In \mathbb{C}^2 , $C \cap S^3$ is a knot (or a link). For small ϵ , it is T(2, 2n + 1).

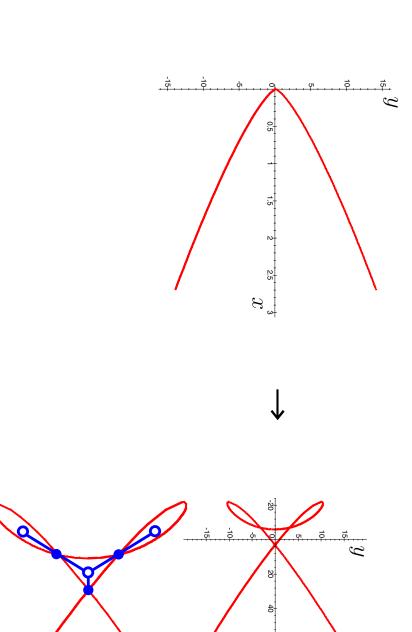




Another example [T.Urabe]

In \mathbb{R}^2 , purterb $y^4 = x^3$ (" E_6 -sing.") and Draw the plane curve:

$$C: (y^2 + \epsilon(6x + 32\epsilon^2))^2 - (x + 7\epsilon^2)^2(x + 22\epsilon^2) = 0$$



The knot is T(4,3). We can see E_6 Dynkin diagram.

A'Campo generalized such correspondence

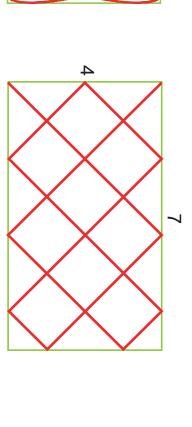
generic Plane Curves
$$P$$
 \Rightarrow Links $L(P)$ in S^3

A'Campo's divide knots

See 平澤 (Hirasawa)'s visualized method).

Ex. Torus links [Goda-Hirasawa-Y, (Gusein-Zade, etc.)] Lissajous curve $(p,q) \sim \text{Billiard curve } (p,q) \Rightarrow T(p,q)$

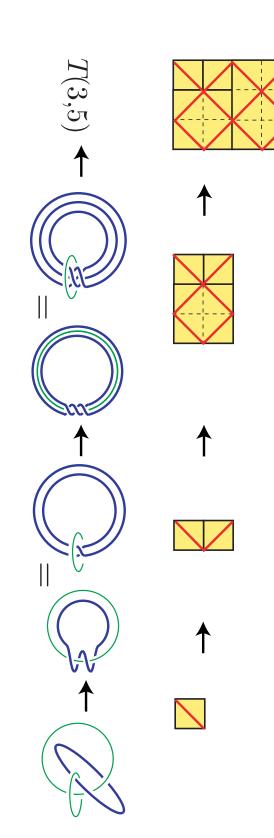
 $(\cos p\theta, \cos q\theta)$ ex. (p,q) = (7,4)PL line with slope ± 1 in a $p \times q$ Rectangle.



This curve has 9 double points,

$$\frac{(p-1)(q-1)}{2} \text{ in general.}$$

Torus knot is obtained by twisting



related to Euclidean Algorithm.

$$(3,5) \longrightarrow_R (3,2) \longrightarrow_L (1,2) \longrightarrow_R (1,1)$$

Blow Up

$$\mathbf{C}^{2} \times \mathbf{C}P^{1} \supset U := \{((z, w), [s:t]) | zt = ws \}$$

$$\downarrow pr.1 \qquad \qquad \downarrow \pi := pr.1|_{U}$$

$$\mathbf{C}^{2} \qquad \qquad (z, w)$$

Note

(1)
$$\pi^{-1}(z, w) = ((z, w), [z : w])$$
 for $(z, w) \neq (0, 0)$

$$(2) \pi^{-1}(0,0) \cong \mathbf{C}P^1 = S^2 \qquad (U \cong \text{punc}\overline{\mathbf{C}P^2})$$

local coordinates of U

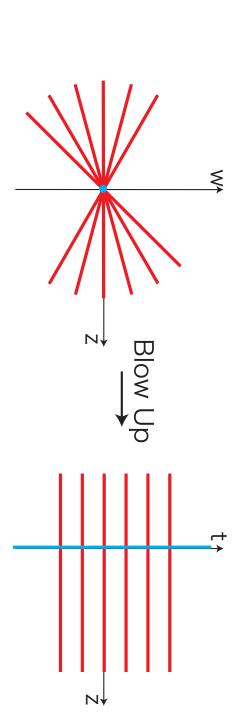
$$\mathbf{C} \times \mathbf{C} \to U &\leftarrow \mathbf{C} \times \mathbf{C}$$

$$(z,t) \to ((z,zt),[1:t])$$

$$((ws,w),[s:1]) \leftarrow (w,s)$$

$$\to (zt,\frac{1}{t})$$
In \mathbf{C}^2 , $(z,w) = (z,zt) = (ws,w)$.

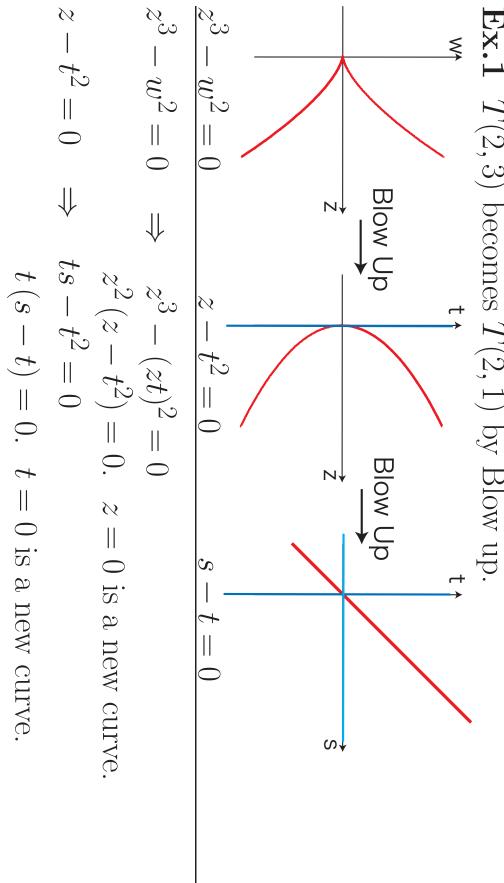
intersecting lines $\cup_i \{w = a_i z\}$ By (z, w) = (z, zt),become parallel $\cup_i \{t = a_i\}$

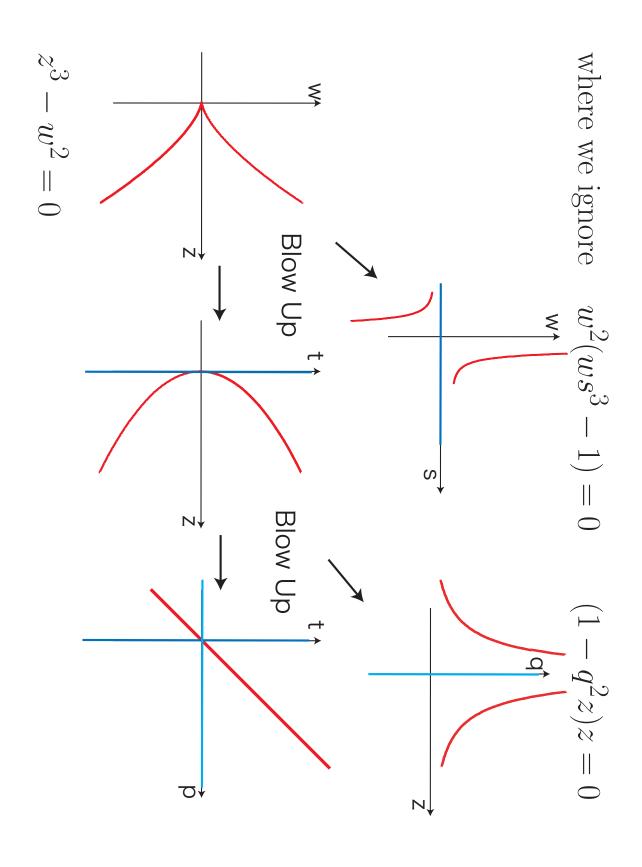


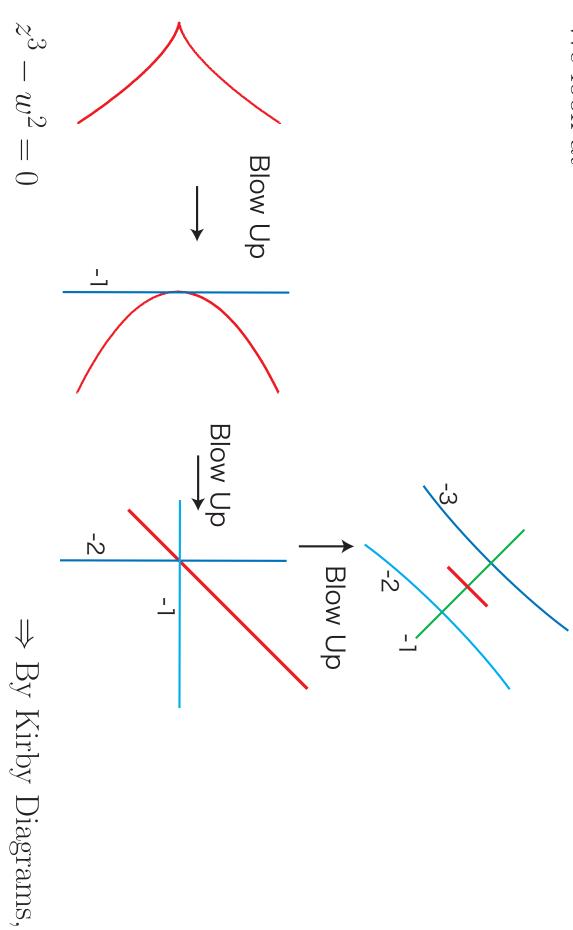
New curve $\{z=0\}$ (-1-curve $\mathbb{P}^1)$ is "exceptional curve".

in zt- or ws- plane is "milder" Singularity at (0,0) of $\{f=0\}$ in zw-plane, It's lift $\pi^{-1}(f=0) \subset U$

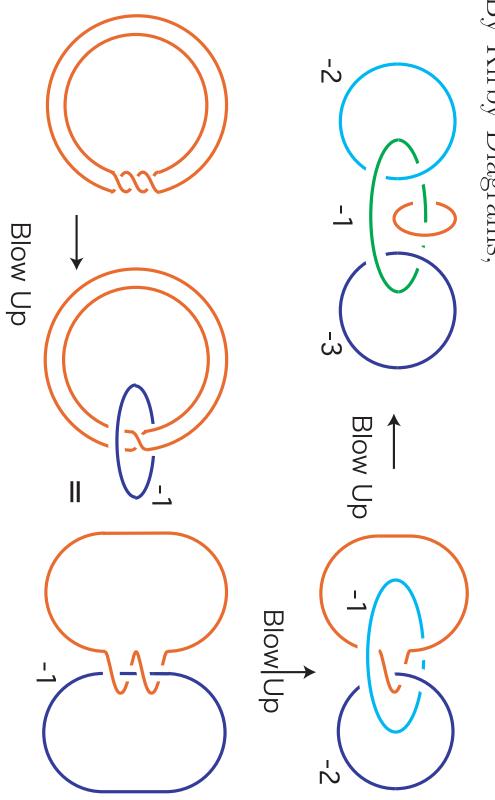
Ex.1 T(2,3) becomes T(2,1) by Blow up.

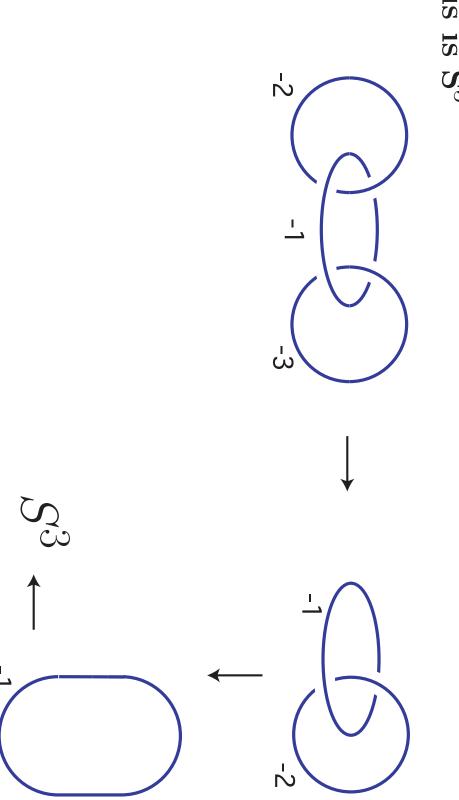




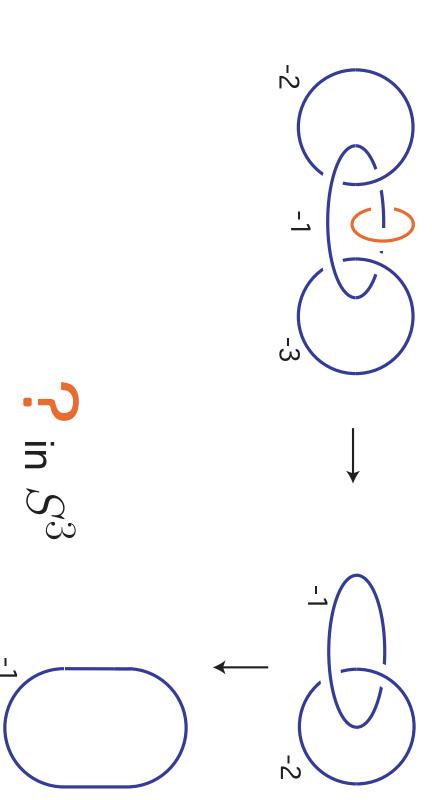


By Kirby Diagrams,

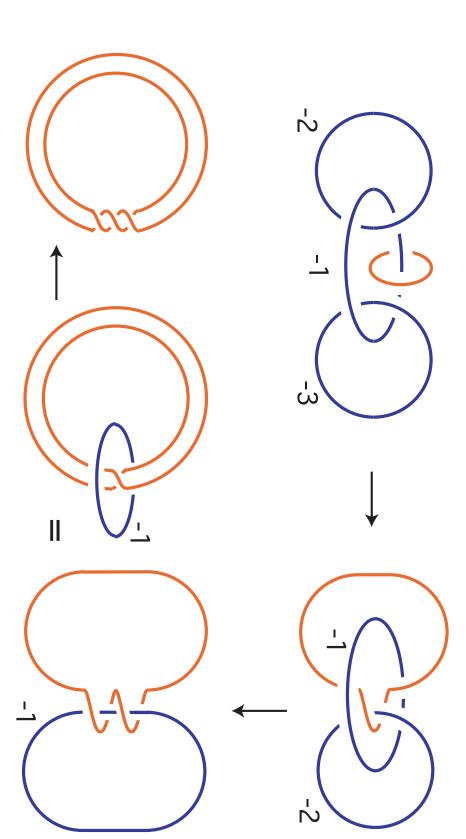




What is this knot?

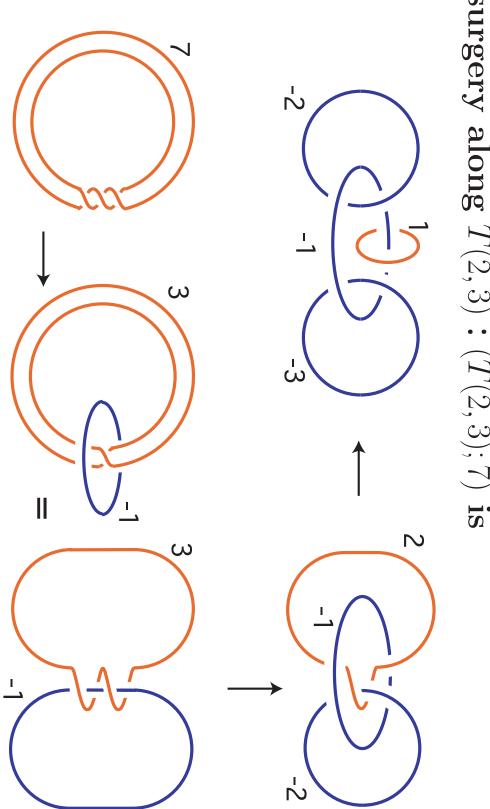


In S^3 , the knot is trefoil T(2,3).

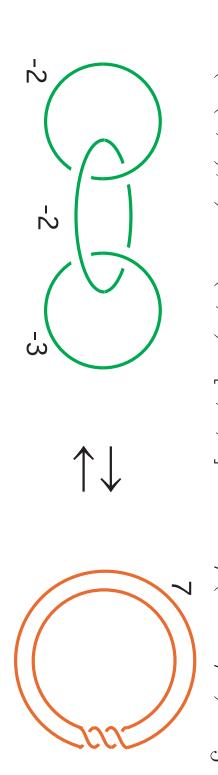


What is 7-surgery along T(2,3)?

7-surgery along T(2,3):(T(2,3);7) is



Answer: (T(2,3);7) = L(7,5). $[2,2,3] = 2 - /(2-1/3) = \frac{7}{5}$.

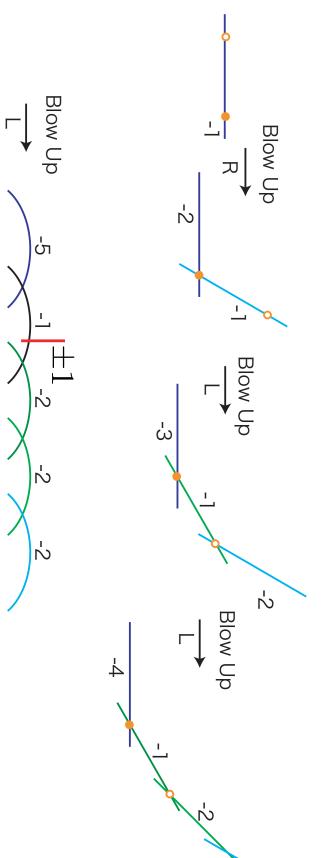


is related to Resolution of singularity (= Blow up) of $z^q - w^p = 0$. In general, lens surgery along T(p,q)(Euclid Algorithm)

$$(4,5) \to_R (4,1) \to_L (3,1) \to_L (2,1) \to_L (1,1)$$

源 Euclidean Algorithm, Blow-Up and Torus knot

$$(4,5) \to_R (4,1) \to_L (3,1) \to_L (2,1) \to_L (1,1)$$



$$[5, 2, 2, 2, 2] = \frac{21}{5}$$

(T(4,5);21)=L(21,5). Non-trivial knots can yield lens spaces!

Lens surgery. in classical sense

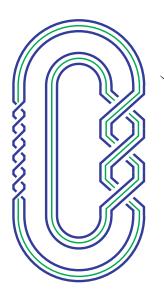
ex.1 ['71 L. Moser] Torus knots.

$$p = ab \pm 1 \Rightarrow (T(a,b);p) \cong L(p,-b^2).$$

$$K := T(2,3)$$
, then $(K;7) = L(7,5)$ and $(K;5) = L(5,1)$.

$$p = ab \ \Rightarrow \ (T(a,b);p) \cong L(a,-b)\sharp L(b,-a).$$

ex.2 ['77 J. Bailey, D. Rolfsen] 2 Cables of Torus knots - Omitted (\rightarrow Tange's talk?) -



ex.3 ['80 R. Fintushel, R. Stern] Hyperbolic knot!

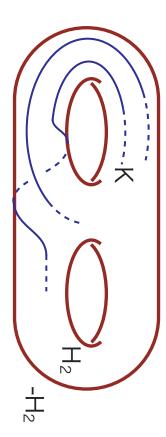
$$K := Pr(-2, 3, 7)$$
, then $M(K, 19) = -L(19, 7)$.

$$M(K, 18) = -L(18, 7)$$

 $\pi_1(M(K, 17))$ is finite, not cyclic.

A knot K in the Heegaard surface Σ_2 is doubly-primitive iff

 K_{\sharp} (as in π_1) is a generator in both $\pi_1(H_2)$ and $\pi_1(-H_2)$.

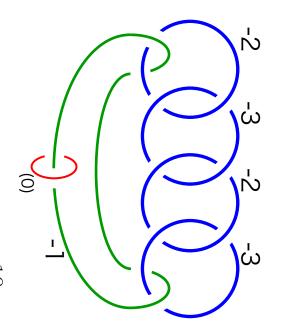


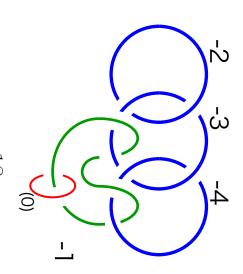
He classified and listed them up (or tried to do it). \square

These lens surgeries are proved by Framed links [Y]

19-surgery L(19, 8)

18-surgery L(18, 11)





$$[2, 3, 2, 3] = \frac{19}{12}$$

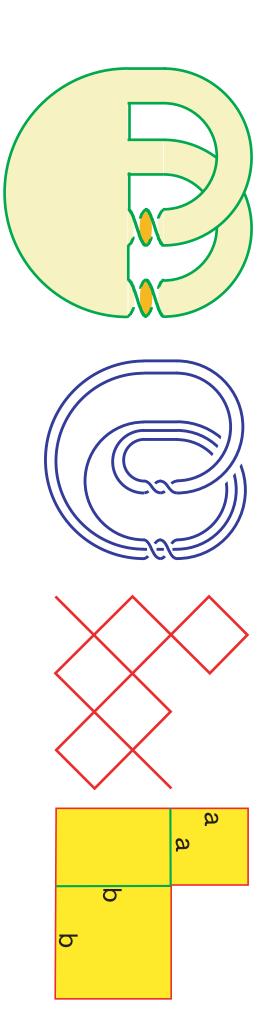
$$[2, 3, 4] = \frac{18}{11}$$

- (1) Blue link describes the lens space.
- (2) Blue \cup green is S^3 ,
- (3) which contains red knot as P(-2, 3, 7) with 18, 19-framed.

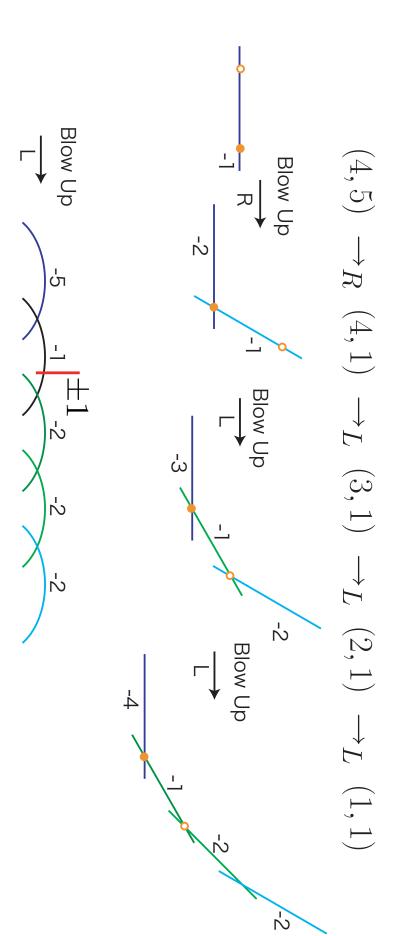
Lens space surgery of TypeVII.

A knot $k^+(a,b)$ in a fiber surface F of Trefoil with p-framing is L(p,q). $(p=a^2+ab+b^2, q=-(a/b)^2 \bmod p)$

•
$$(a,b) = (2,3) \Rightarrow P(-2,3,7)$$



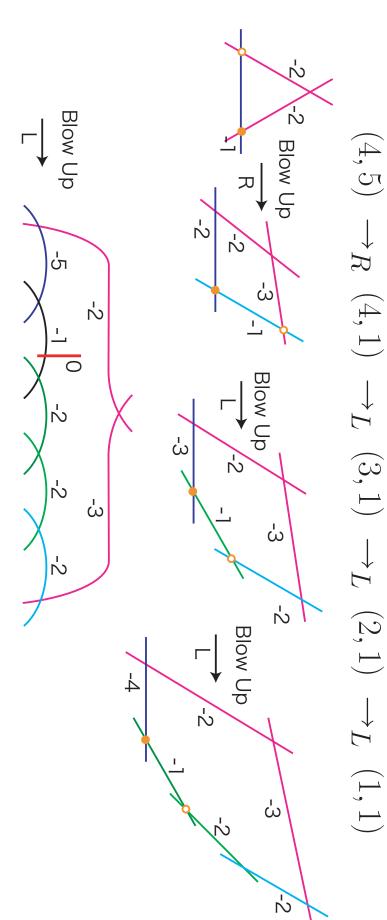
さっきの構成



$$[5,2,2,2]=rac{21}{5}$$
に、次の おまけ を付け加える

さっきの構成 [源] に「おまけ(ピンク)」をつけて

$$(4,5) \to_R (4,1) \to_L (3,1) \to_L (2,1) \to_L (1,1)$$



$$[5, 2, 3, 2, 2, 2] = \frac{61}{14}$$

$$(k^+(4,5);61) = L(61,14). (61 = 4^2 + 4 \cdot 5 + 5^2)$$

ココから後半です:

Example. (a, b) = (7, 2) (corresponding to (p, q) = (9, 2))

 $(a_i, b_i): (7,2) \to_L (5,2) \to_L (3,2) \to_L (1,2) \to_R (1,1).$

 $(m_i, n_i) : (1, 1) \to_L (2, 1) \to_L (3, 1) \to_L (4, 1) \to_R (4, 5).$

w(7,2) = LLLR, W(7,2) = RLLL, and A(7,2) = (4,5). $(s_i, t_i): (1,0) \to_L (1,0) \to_L (1,0) \to_L (1,0) \to_R (1,1).$

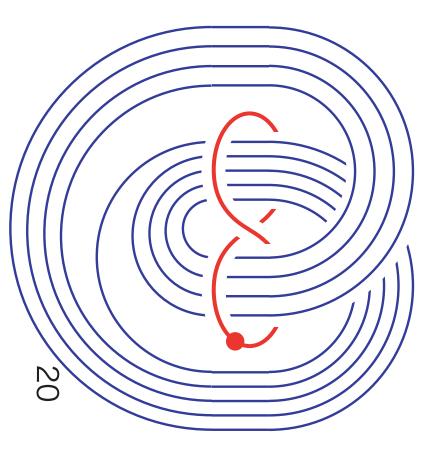
 $i \mid a_{-2} \ a_{-1}$ a_0 a_1 a_2 a_3 a_4 $i \mid \overline{a}$ $-3 \quad \overline{a}$ $-2 \quad \overline{a}$ $-1 \quad \overline{a}$ $0 \quad \overline{a}$

and [5, 5, 2, 2, 2] = 81/17. We get the sequence (-2, -2, -2, -5, -5) $(= C_{9,2})$,

-5 -1 -2 -2 -2 -2

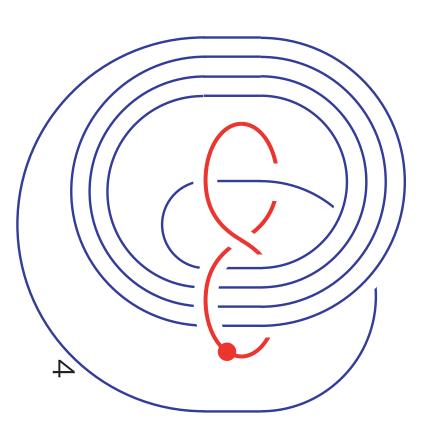
<u>-</u>2

(m,n)=A(p-q,q)=A(7,2)=(4,5) **2430**7, (p,q)=(9,2) の場合、前のページのアルゴリズムから、



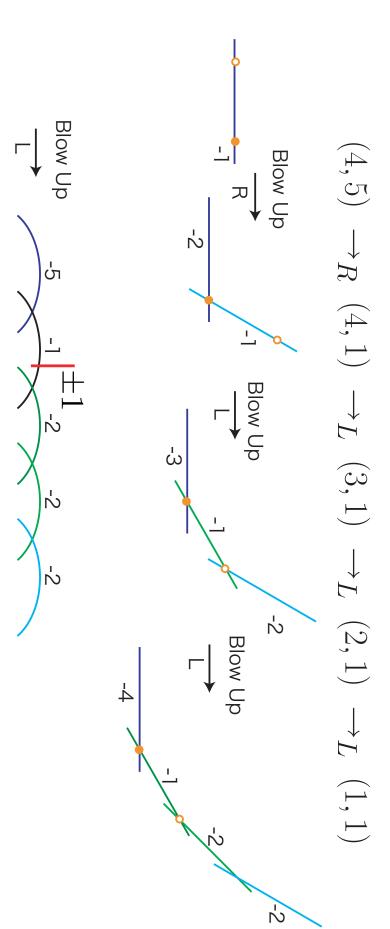
non-trivial 成分は Torus knot T(m,n) で framing は mn.

(p,q)=(5,1) の場合,



 $X_{5,1} = B_5$ ([Fintushel-Stern]'s rational ball)

今度は、さっきの構成

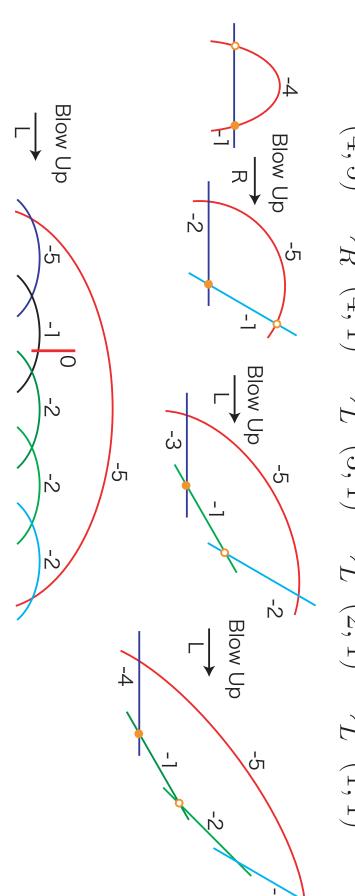


$$[5, 2, 2, 2, 2] = \frac{21}{5}$$

に, 別の おまけ を付け加える

2 度め の「おまけ(赤)」は

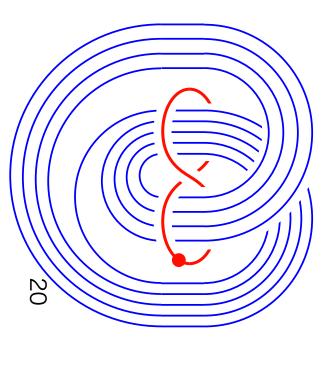
$$(4,5) \to_R (4,1) \to_L (3,1) \to_L (2,1) \to_L (1,1)$$

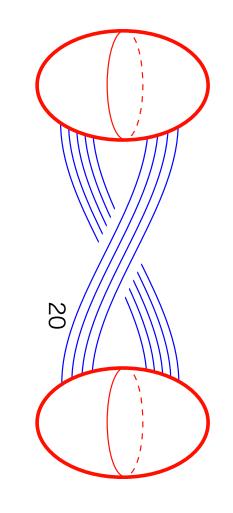


$$[5, 5, 2, 2, 2] = \frac{81}{17}$$

$$\partial X_{9,2} = L(81,17)$$
 が示される. $(81 = 9^2 \ 17 = 9 \times 2 - 1)$

まとめ ((p,q)=(9,2) の場合)





This manifold $X_{9,2}$ satisfies

$$\pi_1(X_{9,2}) \cong \mathbf{Z}/9\mathbf{Z}, \quad \partial X_{9,2} \cong L(81, 17).$$

blow down". It is (maybe) a rational ball used in J.Park's "generalized rational

ありがとうございました